
CTRL
Doc No: TDI-CTRL-REQ-034
Issue: 0.2
Date: 05/04/2013
Page: 1 of 6

RFC: HDF5 Parallel Compressed Writer
Requirements and Use Cases
Mark Basham, Nick Rees, Tobias Richter and Jon Thompson

1 Introduction
An increasing number of synchrotron detectors have high data rates and highly parallel architectures.
In addition, most of the relevant detectors are 2-D imaging ones and the traditional approach of one
file per data frame is approaching its limits because, with frame rates in the kHz region, it is testing
the metadata performance of high throughput file systems. Hence, there is a move to store data in
compressed, mostly 3-dimensional datasets. Since HDF5 doesn’t support compressed parallel writing
this has lead to two approaches:

1. Doing compression in parallel out of the library, and then passing it through a single writing
thread. This is ultimately limited by the single writing thread.

2. Forego compression and use parallel HDF5 to write with multiple processes. This means that
the 10-100 times data reduction that you can sometimes obtain with compression isn’t
available. It also requires that the writers be MPI processes, which often doesn’t work well
with other messaging and event mechanisms used by the detector control systems.

To address this problem this, RFC envisages multiple processes writing compressed HDF5 files
completely independently and in parallel, but allowing a reading process to access the data in these
files via a composite dataset (most probably in another file) which links to datasets in the files via
some form of “multiple soft link” syntax, It is anticipated that that there would be relatively few (<10)
files being written, but this should not be a hard limit – it is just that too many files will either test the
file system or slow down reading because of the file open overheads.

Finally, some data analysis problems are also embarrassingly parallel, and are included as possible
use cases.

Parent HDF5 File

HDF5 Dataset

Child HDF5 File 1

HDF5 Dataset

Child HDF5 File 2

HDF5 Dataset

Child HDF5 File n

HDF5 Dataset

CTRL
Doc No: TDI-CTRL-REQ-034
Issue: 0.2
Date: 05/04/2013
Page: 2 of 6

2 Requirements

1. Multiple processes must be able to construct a single HDF5 dataset in parallel with no inter-
process communication.

2. The dataset must be able to have compressed chunks.
3. Readers must be able to use SWMR to read the dataset while it is being written.
4. The baseline design is to have multiple underlying HDF5 files, with a dataset in a higher level

HDF5 file being comprised of multiple "soft-links" to the lower level datasets.
5. All files must be able to be read as valid HDF5 files.
6. If a lower-level file or dataset doesn't exist, it should be treated the same as if a chunk is

missing in a normal dataset.
7. Performance should be similar to a normal HDF5 dataset, with a possible fixed overhead per

file open (however, parallelizing the file opens could be investigated).
8. It is acceptable to have all soft-links for one dataset specified by a single printf-like

statement.
9. It is acceptable to require dimensionality of the underlying files to be specified by a fixed

layout definition like chunk layouts (with a stride and offset specified if we allow the Percival
use case). If the underlying file has a different dimensionality additional data can be ignored,
and missing data handled as in 6 above.

10. It is acceptable to require the underlying files to have the same chunk layout.

3 Use Cases
In this section are presented a number of use cases from systems we know are being developed at
the present time. A summary of the use cases are:

1. Excalibur (6 identical focal plane areas being written in parallel, 1 chunk/focal plane
area/frame).

2. Dual PCO.edge (2 identical focal plane areas written in parallel, with chunking in the time
dimension, and each focal plane area spread across ~20 chunks).

3. Eiger (One system writing a series of files, each file consisting of a fixed number of
consecutive frames, 1 chunk/file).

4. Percival Frame builder. (8 systems each writing a full frame with a time stride of 8, but each
with a different time phase). This is not a critical use case since the system is in such an early
stage of development that other designs are possible.

5. Dual PCO.edge tomography analysis (~20 different systems reading output of (2) with an x-t
frame, processing it, and writing ~20 separate files which are tomographic reconstructions.
Possibly a SWMR reader, so as the dimension of the dataset being read grows, additional x-t
frame extents are read incrementally).

6. Other Data analysis use cases (preferably some which aren't three dimensional).
7. Possibly sparse arrays?

Note: at time of this draft (v0.2 dated 5 April 2013) the use cases for the final three cases haven’t
been generated yet....

CTRL
Doc No: TDI-CTRL-REQ-034
Issue: 0.2
Date: 05/04/2013
Page: 3 of 6

3.1 Excalibur
EXCALIBUR is an advanced photon counting detector being designed and built by a collaboration of
Diamond and the STFC. It is based around 48 CERN Medipix3 chips arranged as an 8 x 6 array for a
total frame size (including gaps) of 2069 x 1793. The hardware architecture is shown in figure 1
below:

It can be seen that each row of eight Medipix 3 chips is read by a front end module (FEM) into a
readout node computer. The six readout nodes then all write their portion of the image to the output
file in parallel. This process repeats for each image, roughly (but not completely) in synchronism.
There are gaps between the Medipix 3 chips, shown in figure 2. The small (3 pixel) gaps are filled by
the readout software, but the large gaps are not.

The HDF requirements are therefore:

1. Each full image to consist of six horizontally cut chunks. A readout node will write its part of
the total image as a single chunk. Chunk size is 2069x259x1 (odd numbered nodes), or
2069x256x1 (even numbered nodes); the chunk streams do not have exactly the same
spatial dimensions.

Medipix3 device

Large
(124
pixel)
gap

Real pixel Gap pixel Sensor area

Small (3 pixel) gap

Figure 2. Excalibur Medipix3 chip layout and gap details.

FEM 1

FEM 2

FEM 3

FEM 4

FEM 5

FEM 6

Detector head

Sensor/Medipix3
Hybrids

Readout Node 1

Readout Node 2

Readout Node 3

Readout Node 4

Readout Node 5

Readout Node 6

Master Node

10GigE

Network

Figure 1: Excalibur hardware architecture.

CTRL
Doc No: TDI-CTRL-REQ-034
Issue: 0.2
Date: 05/04/2013
Page: 4 of 6

2. Gaps between nodes 2 & 3 and nodes 4 & 5 (124 pixels wide) to be constant filled (from the

point of view of the reader).
3. Writing of the six streams of chunks to occur in parallel.
4. No requirement for strict synchronisation between the streams. The total number of chunks

written by each stream will be the same, but the timing between streams is not
synchronised.

5. Compression of one chunk stream to have no dependency on other chunk streams. In other
words, compression must have no spatial requirement across chunk boundaries. Temporal
dependencies are allowed.

3.2 Dual PCO Edge
Two identical detectors acquiring images simultaneously. Hardware triggering keeps the image
streams roughly in synchronisation. This is a very similar case to Excalibur, the main differences
being the gaps and the chunking of the image parts. The gap may be particularly tricky as it will
depend on the method of mounting the two cameras, but this is not really an HDF problem.

The HDF requirements are:

1. Full images to consist of a sub-image from each camera captured at the same time.
2. Each camera sub-image may consist of data from multiple chunks.
3. Chunking may occur in the time dimension as well as the spatial dimensions.
4. Writing of the two streams of chunks to occur in parallel.
5. No requirement for strict synchronisation between the streams. The total number of chunks

written by each stream will be the same, but the timing between streams is not
synchronised.

6. Compression of one chunk stream to have no dependency on the other chunk stream.
7. Gap between the cameras to be constant filled (from the point of view of the reader).

3.3 Eiger
Eiger is a high speed detector system being developed by DECTRIS Ltd. It is based on combining
arrays of the ~256x256 pixel Eiger chip developed by PSI. These are combined into a 4x2 array to
form a module and this basic module building block will be used to build up the final systems, which
are available in a number of sizes.

Type Modules Active area
[mm2] Pixel array Frame rate

[Hz]
DCB-PC
[Gbps]

1M 2 77 x 80 1030 x 1065 3000 40

4M 8 155 x 163 2070 x 2167 750 40

9M 18 233 x 245 3110 x 3269 333 40

16M 32 311 x 328 4150 x 4371 187 40

CTRL
Doc No: TDI-CTRL-REQ-034
Issue: 0.2
Date: 05/04/2013
Page: 5 of 6

In the proposed software design it is intended to write data as a time series of files, each containing a
pixel data arranged in a 3-D dataset of a fixed number of 2-dimensional frames. Each 2-D frame, will
be an HDF5 chunk that is compressed outside the HDF5 library. So, when written, the data comprises
n files, each with a fixed number of m frames, and a total of n*m frames. In the baseline design all
data is written by a single process, so there is no parallel writing required.

The HDF5 requirements are:

• Writer must be able to do out-of-library compression.

• Multiple files written independently must be able to be viewed as a single dataset.

• Top level dataset is a 3-D stack of frames composed of a concatenation along the slowest
dimension of mostly fixed sized lower level 3-D data sets. The only exception to the fixed
size is that the last dataset may have fewer frames.

3.4 Percival Frame Builder
This system is currently under development and the baseline design writes ~4000 x ~4000 pixel
frames at 120Hz. The detector data format is 14bit, so we anticipate 2 byte pixels, so the overall data
rate is about 3 GB/sec. There is an engineering mode proposed which has 4 bytes/pixel. One
proposed way of parallelising the data path is with multiple parallel writers, each writing a full frame,
but only one writer for any specific frame. Thus each writer is writing a part of the total dataset with a
fixed stride and a different offset in the slowest changing dimension. In the baseline design there are
8 backend writing systems, so the stride length is 8 frames. The total number of frames is not

necessarily a multiple of the number of writers, so the number of frames written by the writers may
differ by 1.

The HDF5 requirements for this system are:

Dataset 1 Dataset 2 Dataset 3 Dataset n

Frame 3m-1 Frame 1 Frame m Frame nm

Time

Frame 1
(Writer 1)

Frame 9
(Writer 1)

Frame 8
(Writer 8)

Frame 10
(Writer 2)

Time

Frame 16
(Writer 8)

Frame 2
(Writer 2)

CTRL
Doc No: TDI-CTRL-REQ-034
Issue: 0.2
Date: 05/04/2013
Page: 6 of 6

• Writing systems to be writing in parallel and completely independent.

• Data written by a single writer to a lower level dataset has a fixed stride and offset in the
slowest changing dimension of the upper level dataset.

• Writer should be able to write compressed data in the lower level dataset.

It should be noted that since this is not the final design for the Percival system it should not be
considered as a top level requirement if implementation proves difficult.

