
NeXus: a common data format for
neutron, x-ray, and muon science

Release 3.1

http://nexusformat.org

September 18, 2012

CONTENTS

I User Manual and Reference Documentation 1

1 Copyright 3
1.1 Licenses . 3

2 NeXus: User Manual 5
2.1 Preface . 5
2.2 NeXus Introduction . 7
2.3 NeXus Design . 21
2.4 Constructing NeXus Files and Application Definitions . 48
2.5 Strategies for storing information in NeXus data files . 60
2.6 Brief history of the NeXus format . 61
2.7 NeXus Community . 63
2.8 Installation . 69
2.9 Verification and validation of files . 71
2.10 NeXus Utilities . 75
2.11 Frequently Asked Questions . 78

3 NeXus: Reference Documentation 81
3.1 NAPI: NeXus Application Programmer Interface . 81
3.2 NXDL: The NeXus Definition Language . 87
3.3 NeXus classes . 90
3.4 Examples of writing and reading NeXus data files . 93

4 Authors 135

5 Revision History 137

6 Licenses 139
6.1 FDL: GNU Free Documentation License . 139
6.2 LGPL: GNU Lesser Gnu Public License . 148

Index 153

i

ii

Part I

User Manual and Reference Documentation

1

CHAPTER

ONE

COPYRIGHT

September 18, 2012

Published 2011 by NeXus International Advisory Committee, http://www.nexusformat.org

Copyright (c) 1996-2012, NeXus International Advisory Committee

1.1 Licenses

The NeXus manual is licensed under the terms of the GNU Free Documentation License version 1.3. See
the FDL license file included with the source of this manual or the FDL: GNU Free Documentation License
(page 139) section of this manual or refer to http://www.gnu.org/licenses/fdl-1.3.txt for more details.

The examples in the NeXus manual are licensed under the terms of the GNU Lesser General Public License
version 3. See the LGPL license file included with the source of this manual or the LGPL: GNU Lesser
Gnu Public License (page 148) section of this manual or refer to http://www.gnu.org/licenses/lgpl-3.0.txt
for more details.

3

http://www.nexusformat.org
http://www.gnu.org/licenses/fdl-1.3.txt
http://www.gnu.org/licenses/lgpl-3.0.txt

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

4 Chapter 1. Copyright

CHAPTER

TWO

NEXUS: USER MANUAL

2.1 Preface

With this edition of the manual, NeXus introduces a complete version of the documentation of the NeXus
standard. The content from the wiki has been converted, augmented (in some parts significantly), clarified,
and indexed. The NeXus Definition Language (NXDL) is introduced now to define base classes and appli-
cation definitions. NXDL replaces the previous method (meta-DTD) to define NeXus classes. NeXus base
classes and instrument definitions are now assigned to one of three classifications: (1) base classes (that
represent the components used to build a NeXus data file), (2) application definitions (used to define a min-
imum set of data for a specific purpose such as scientific data processing or an instrument definition), and
(3) contributed definitions (definitions and specifications that are in an incubation status before ratification
by the NIAC). Additional examples have been added to respond to inquiry from the users of the NeXus
standard about implementation and usage. Hopefully, the improved documentation with more examples and
the new NXDL will reduce the learning barriers incurred by those new to NeXus.

2.1.1 Representation of data examples

Most of the examples of data files have been written in a format intended to show the structure of the file
rather than the data content. In some cases, where it is useful, some of the data is shown. Consider this
prototype example:

5

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

example of NeXus data file structure

1 entry:NXentry
2 instrument:NXinstrument
3 detector:NXdetector
4 data:[]
5 @axes = "bins"
6 @long_name = "strip detector 1-D array"
7 @signal = 1
8 bins:[0, 1, 2, ... 1023]
9 @long_name = "bin index numbers"

10 sample:NXsample
11 name = "zeolite"
12 data:NXdata
13 data --> /entry/instrument/detector/data
14 bins --> /entry/instrument/detector/bins

Some words on the notation:

• Hierarchy is represented by indentation. Objects on the same indentation level are in the same group

• The combination name:NXclass denotes a NeXus group with name name and class NXclass.

• A simple name (no following class) denotes a data field. An equal sign is used to show the value,
where this is important to the example.

• Sometimes, a data type is specified and possibly a set of dimensions. For example,
energy:NX_NUMBER[NE] says energy is a 1-D array of numbers (either integer or floating point)
of length NE.

• Attributes are noted as @name=”value” pairs. The @ symbol only indicates this is an attribute and is
not part of the attribute name.

• Links are shown with a text arrow --> indicating the source of the link (using HDF5 notation listing
the sequence of names).

Line 1 shows that there is one group at the root level of the file named entry. This group is of type
NXentry which means it conforms to the specification of the NXentry NeXus base class. Using the
HDF5 nomenclature, we would refer to this as the /entry group.

Lines 2, 10, and 12: The /entry group contains three subgroups: instrument, sample, and data.
These groups are of type NXinstrument, NXsample, and NXdata, respectively.

Line 4: The data of this example is stored in the /entry/instrument/detector group in the dataset
called data (HDF5 path is /entry/instrument/detector/data). The indication of data:\[]
says that data is an array of unspecified dimension(s).

Lines 5-7: There are three attributes of /entry/instrument/detector/data: axes,
long_name, and signal.

Line 8 (reading bins:\[0, 1, 2, ... 1023]) shows that bins is a 1-D array of length presum-
ably 1024. A small, representative selection of values are shown.

Line 9: an attribute that shows a descriptive name of /entry/instrument/detector/bins. This
attribute might be used by a NeXus client while plotting the data.

6 Chapter 2. NeXus: User Manual

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

Line 11 (reading name = "zeolite") shows how a string value is represented.

Lines 13-14: The /entry/data) group has two datasets that are actually linked as shown. (As you will
see later, the NXdata group is required and enables NeXus clients to easily determine what to offer for
display on a default plot.)

2.1.2 Class path specification

In some places in this documentation, a path may be shown using the class types rather than names.
For example: /NXentry/NXinstrument/NXcrystal/wavelength identifies a dataset called
wavelength that is inside a group of type NXcrystal ... This nomemclature is used when the exact
name of each group is either unimportant or not specified. Often, this will be used in a NXDL specification
to indicate the connections of a link.

2.2 NeXus Introduction

In recent years, a community of scientists and computer programmers working in neutron and synchrotron
facilities around the world came to the conclusion that a common data format would fulfill a valuable
function in the scattering community. As instrumentation becomes more complex and data visualization
become more challenging, individual scientists, or even institutions, have found it difficult to keep up with
new developments. A common data format makes it easier, both to exchange experimental results and to
exchange ideas about how to analyze them. It promotes greater cooperation in software development and
stimulates the design of more sophisticated visualization tools. Additional background information is given
in Brief history of the NeXus format (page 61).

This section is designed to give a brief introduction to NeXus, the data format and tools that have been
developed in response to these needs. It explains what a modern data format such as NeXus is and how to
write simple programs to read and write NeXus files.

The programmers who produce intermediate files for storing analyzed data should agree on simple inter-
change rules.

2.2.1 What is NeXus?

The NeXus data format has four components:

A set of design principles (page 8) to help people understand what is in the data files.

A set of data storage objects (page 12) (ClassDefinitions-Base and ClassDefinitions-Application) to allow
the development of portable analysis software.

A set of subroutines (page 13) (NeXus Utilities (page 75)) to make it easy to read and write NeXus data
files.

A Scientific Community (page 14) to provide the scientific data, advice, and continued involvement with
the NeXus standard. NeXus provides a forum for the scientific community to exchange ideas in data
storage.

2.2. NeXus Introduction 7

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

In addition, NeXus relies on a set of low-level file formats to actually store NeXus files on physical media.
Each of these components are described in more detail in the Fileformat section.

The NeXus Application-Programmer Interface (NAPI), which provides the set of subroutines for reading
and writing NeXus data files, is described briefly in NAPI: The NeXus Application Programming Interface
(page 17). (Further details are provided in the NAPI chapter of Volume II of this documentation.)

The principles guiding the design and implementation of the NeXus standard are described in the NeXus
Design (page 21) chapter.

Base classes, which comprise the data storage objects used in NeXus data files, are detailed in the
ClassDefinitions-Base chapter of Volume II of this documentation.

Additionally, a brief list describing the set of NeXus Utilities available to browse, validate, translate, and
visualise NeXus data files is provided in the NeXus Utilities (page 75) chapter.

A Set of Design Principles

NeXus data files contain four types of entity: data groups, data fields, attributes, and links.

Data Groups (page 21) Data groups are like folders that can contain a number of fields and/or other groups.

Data Fields (page 22) Data fields can be scalar values or multidimensional arrays of a variety of sizes (1-
byte, 2-byte, 4-byte, 8-byte) and types (characters, integers, floats). In HDF, fields are represented as
HDF Scientific Data Sets (also known as SDS).

Data Attributes (page 22) Extra information required to describe a particular group or field, such as the
data units, can be stored as a data attribute.

Links (page 23) Links are used to reference the plottable data from NXdata when the data is provided in
other groups such as NXmonitor or NXdetector.

In fact, a NeXus file can be viewed as a computer file system. Just as files are stored in folders (or subdirec-
tories) to make them easy to locate, so NeXus fields are stored in groups. The group hierarchy is designed
to make it easy to navigate a NeXus file.

Example of a NeXus File

The following diagram shows an example of a NeXus data file represented as a tree structure.

8 Chapter 2. NeXus: User Manual

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

Example of a NeXus Data File

Note that each field is identified by a name, such as counts, but each group is identified both by a name
and, after a colon as a delimiter, the class type, e.g., monitor:NXmonitor). The class types, which all
begin with NX, define the sort of fields that the group should contain, in this case, counts from a beamline
monitor. The hierarchical design, with data items nested in groups, makes it easy to identify information if
you are browsing through a file.

Important Classes

Here are some of the important classes found in nearly all NeXus files. A complete list can be found in the
NeXus Design (page 21) chapter.

Note: NXentry and NXdata are the only two classes necessary to store the minimum amount of infor-
mation in a valid NeXus data file.

NXentry Required: The top level of any NeXus file contains one or more groups with the class NXentry.
These contain all the data that is required to describe an experimental run or scan. Each NXentry
typically contains a number of groups describing sample information (class NXsample), instrument
details (class NXinstrument), and monitor counts (class NXmonitor).

NXdata Required: Each NXentry group contains one or more groups with class NXdata. These groups
contain the experimental results in a self-contained way, i.e., it should be possible to generate a sen-
sible plot of the data from the information contained in each NXdata group. That means it should
contain the axis labels and titles as well as the data.

NXsample A NXentry group will often contain a group with class NXsample. This group contains infor-
mation pertaining to the sample, such as its chemical composition, mass, and environment variables

2.2. NeXus Introduction 9

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

(temperature, pressure, magnetic field, etc.).

NXinstrument There might also be a group with class NXinstrument. This is designed to encapsulate all
the instrumental information that might be relevant to a measurement, such as flight paths, collimation,
chopper frequencies, etc.

NXinstrument excerpt

Since an instrument can comprise several beamline components each defined by several
parameters, the components are each specified by a separate group. This hides the com-
plexity from generic file browsers, but makes the information available in an intuitively
obvious way if it is required.

Simple Example

NeXus data files do not need to be complicated. In fact, the following diagram shows an extremely simple
NeXus file (in fact, the simple example shows the minimum information necessary for a NeXus data file)
that could be used to transfer data between programs. (Later in this section, we show how to write and read
this simple example.)

Example structure of a simple data file

This illustrates the fact that the structure of NeXus files is extremely flexible. It can accommodate very
complex instrumental information, if required, but it can also be used to store very simple data sets. In the

10 Chapter 2. NeXus: User Manual

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

next example, a NeXus data file is shown as XML:

A very simple NeXus Data file (in XML)

1 <?xml version="1.0" encoding="UTF-8"?>
2 <NXroot NeXus_version="4.3.0" XML_version="mxml"
3 file_name="verysimple.xml"
4 xmlns="http://definition.nexusformat.org/schema/3.1"
5 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
6 xsi:schemaLocation="http://definition.nexusformat.org/schema/3.1
7 http://definition.nexusformat.org/schema/3.1/BASE.xsd"
8 file_time="2010-11-12T12:40:17-06:00">
9 <NXentry name="entry">

10 <NXdata name="data">
11 <counts NAPItype="NX_INT64[15]"
12 long_name="photodiode counts"
13 signal="NX_INT32:1"
14 axes="two_theta">
15 1193 4474
16 53220 274310
17 515430 827880
18 1227100 1434640
19 1330280 1037070
20 598720 316460
21 56677 1000
22 1000
23 </counts>
24 <two_theta NAPItype="NX_FLOAT64[15]"
25 units="degrees"
26 long_name="two_theta (degrees)">
27 18.90940 18.90960 18.90980 18.91000
28 18.91020 18.91040 18.91060 18.91080
29 18.91100 18.91120 18.91140 18.91160
30 18.91180 18.91200 18.91220
31 </two_theta>
32 </NXdata>
33 </NXentry>
34 </NXroot>

NeXus files are easy to create. This example NeXus file was created using a short Python program and
NeXpy:

Using NeXpy to write a very simple NeXus HDF5 Data file

1 #
2 # This example uses NeXpy to build the verysimple.nx5 data file.
3

2.2. NeXus Introduction 11

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

4 from nexpy.api import nexus
5

6 angle = [18.9094, 18.9096, 18.9098, 18.91, 18.9102,
7 18.9104, 18.9106, 18.9108, 18.911, 18.9112,
8 18.9114, 18.9116, 18.9118, 18.912, 18.9122]
9 diode = [1193, 4474, 53220, 274310, 515430, 827880,

10 1227100, 1434640, 1330280, 1037070, 598720,
11 316460, 56677, 1000, 1000]
12

13 two_theta = nexus.SDS(angle, name="two_theta",
14 units="degrees",
15 long_name="two_theta (degrees)")
16 counts = nexus.SDS(diode, name="counts", long_name="photodiode counts")
17 data = nexus.NXdata(counts,[two_theta])
18 data.nxsave("verysimple.nx5")
19

20 # The verysimple.xml file was built with this command:
21 # nxconvert -x verysimple.nx5 verysimple.xml
22 # and then hand-edited (line breaks) for display.

A Set of Data Storage Objects

If the design principles are followed, it will be easy for anyone browsing a NeXus file to understand what
it contains, without any prior information. However, if you are writing specialized visualization or analysis
software, you will need to know precisely what specific information is contained in advance. For that
reason, NeXus provides a way of defining the format for particular instrument types, such as time-of-flight
small angle neutron scattering. This requires some agreement by the relevant communities, but enables the
development of much more portable software.

The set of data storage objects is divided into three parts: base classes, application definitions, and con-
tributed definitions. The base classes represent a set of components that define the dictionary of all possible
terms to be used with that component. The application definitions specify the minimum required informa-
tion to satisfy a particular scientific or data analysis software interest. The contributed definitions have been
submitted by the scientific community for incubation before they are adopted by the NIAC or for availability
to the community.

These instrument definitions are formalized as XML files, using NXDL, (as described in the NXDL chapter
in Volume II of this documentation) to specify the names of data fields, and other NeXus data objects. The
following is an example of such a file for the simple NeXus file shown above.

A very simple NeXus Definition Language (NXDL) file

1 <?xml version="1.0" ?>
2 <definition
3 xmlns="http://definition.nexusformat.org/nxdl/3.1"
4 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
5 xsi:schemaLocation="http://definition.nexusformat.org/nxdl/3.1 ../nxdl.xsd"

12 Chapter 2. NeXus: User Manual

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

6 category="base"
7 name="verysimple"
8 version="1.0"
9 svnid="$Id: verysimple.nxdl.xml 1091 2012-05-28 21:10:09Z Pete Jemian $"

10 type="group" extends="NXobject">
11

12 <doc>
13 A very simple NeXus NXDL file
14 </doc>
15 <group type="NXentry">
16 <group type="NXdata">
17 <field name="counts" type="NX_INT" units="NX_UNITLESS">
18 <doc>counts recorded by detector</doc>
19 </field>
20 <field name="two_theta" type="NX_FLOAT" units="NX_ANGLE">
21 <doc>rotation angle of detector arm</doc>
22 </field>
23 </group>
24 </group>
25 </definition>

For complete examples of reading and writing NeXus data files, refer to the Examples of writing and reading
NeXus data files (page 93) chapter in Volume II. This chapter has several examples of writing and reading
NeXus data files. If you want to define the format of a particular type of NeXus file for your own use, e.g.
as the standard output from a program, you are encouraged to publish the format using this XML format.
An example of how to do this is shown in the section titled Creating a NXDL Specification (page 52).

A Set of Subroutines

NeXus data files are high-level so the user only needs to know how the data are referenced in the file but
does not need to be concerned where the data are stored in the file. Thus, the data are most easily accessed
using a subroutine library tuned to the specifics of the data format.

In the past, a data format was defined by a document describing the precise location of every item in the
data file, either as row and column numbers in an ASCII file, or as record and byte numbers in a binary
file. It is the job of the subroutine library to retrieve the data. This subroutine library is commonly called an
application-programmer interface or API.

For example, in NeXus, a program to read in the wavelength of an experiment would contain lines similar
to the following:

Simple example of reading data using the NeXus API

1 NXopendata (fileID, "wavelength");
2 NXgetdata (fileID, lambda);
3 NXclosedata (fileID);

2.2. NeXus Introduction 13

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

In this example, the program requests the value of the data that has the label wavelength, storing the
result in the variable lambda. fileID is a file identifier that is provided by NeXus when the file is opened.

We shall provide a more complete example when we have discussed the contents of the NeXus files.

Scientific Community

NeXus began as a group of scientists with the goal of defining a common data storage format to exchange
experimental results and to exchange ideas about how to analyze them.

The NeXus Community (page 63) provides the scientific data, advice, and continued involvement with the
NeXus standard. NeXus provides a forum for the scientific community to exchange ideas in data storage
through the NeXus wiki.

The NeXus International Advisory Committee supervises the development and maintenance of the NeXus
common data format for neutron, X-ray, and muon science. The NIAC supervises a technical committee
to oversee the NeXus Application Programmer Interface (NAPI: NeXus Application Programmer Interface
(page 81)) and the NeXus class definitions.

Motivations for the NeXus standard in the Scientific Community

By the early 1990s, several groups of scientists in the fields of neutron and X-ray science had recognized
a common and troublesome pattern in the data acquired at various scientific instruments and user facilities.
Each of these instruments and facilities had a locally defined format for recording experimental data. With
lots of different formats, much of the scientists’ time was being wasted in the task of writing import readers
for processing and analysis programs. As is common, the exact information to be documented from each
instrument in a data file evolves, such as the implementation of new high-throughput detectors. Many of
these formats lacked the generality to extend to the new data to be stored, thus another new format was
devised. In such environments, the documentation of each generation of data format is often lacking.

Three parallel developments have led to NeXus:

1. June 1994: Mark Könnecke (Paul Scherer Institute, Switzerland) made a proposal using netCDF for
the European neutron scattering community while working at the ISIS pulsed neutron facility.

2. August 1994: Jon Tischler and Mitch Nelson (Oak Ridge National Laboratory, USA) proposed an
HDF-based format as a standard for data storage at the Advanced Photon Source (Argonne National
Laboratory, USA).

3. October 1996: Przemek Klosowski (National Institute of Standards and Technology, USA) produced
a first draft of the NeXus proposal drawing on ideas from both sources.

These scientists proposed methods to store data using a self-describing, extensible format that was already in
broad use in other scientific disciplines. Their proposals formed the basis for the current design of the NeXus
standard which was developed across three workshops organized by Ray Osborn (ANL), SoftNeSS‘94 (Ar-
gonne Oct. 1994), SoftNeSS‘95 (NIST Sept. 1995), and SoftNeSS‘96 (Argonne Oct. 1996), attended by
representatives of a range of neutron and X-ray facilities. The NeXus API was released in late 1997. Basic
motivations for this standard were:

1. Simple plotting (page 15)

14 Chapter 2. NeXus: User Manual

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

2. A Unified format for reduction and analysis (page 15)

3. A Defined dictionary of terms (page 16)

Simple plotting An important motivation for the design of NeXus was to simplify the creation of a default
plot view. While the best representation of a set of observations will vary, depending on various conditions,
a good suggestion is often known a priori. This suggestion is described in the NXdata element so that any
program that is used to browse NeXus data files can provide a best representation without request for user
input.

Unified format for reduction and analysis Another important motivation for NeXus, indeed the raison
d’etre, was the community need to analyze data from different user facilities. A single data format that is in
use at a variety of facilities would provide a major benefit to the scientific community. This unified format
should be capable of describing any type of data from the scientific experiments, at any step of the process
from data acquisition to data reduction and analysis. This unified format also needs to allow data to be
written to storage as efficiently as possible to enable use with high-speed data acquisition.

Self-description, combined with a reliance on a multi-platform (and thereby portable) data storage format,
are valued components of a data storage format where the longevity of the data is expected to be longer than
the lifetime of the facility at which it is acquired. As the name implies, self-description within data files is
the practice where the structure of the information contained within the file is evident from the file itself.
A multi-platform data storage format must faithfully represent the data identically on a variety of computer
systems, regardless of the bit order or byte order or word size native to the computer.

The scientific community continues to grow the various types of data to be expressed in data files. This
practice is expected to continue as part of the investigative process. To gain broad acceptance in the scientific
user community, any data storage format proposed as a standard would need to be extendable and continue
to provide a means to express the latest notions of scientific data.

The maintenance cost of common data structures meeting the motivations above (self-describing, portable,
and extendable) is not insurmountable but is often well-beyond the research funding of individual members
of the muon, neutron, and X-ray science communities. Since it is these members that drive the selection of
a data storage format, it is necessary for the user cost to be as minimal as possible. In this case, experience
has shown that the format must be in the public-domain for it to be commonly accepted as a standard. A
benefit of the public-domain aspect is that the source code for the API is open and accessible, a point which
has received notable comment in the scientific literature.

More recently, NeXus has recognized that part of the scientific community with a desire to write and record
scientific data, has small data volumes and a large aversion to the requirement of a complicated API nec-
essary to access data in binary files such as HDF. For such information, the NeXus API (NAPI) has been
extended by the addition of the eXtensible Markup Language (XML) 1 as an alternative to HDF. XML
is a text-based format that supports compression and structured data and has broad usage in business and
e-commerce. While possibly complicated, XML files are human readable, and tools for translation and ex-
traction are plentiful. The API has routines to read and write XML data and to convert between HDF and
XML.

1 XML: http://www.w3.org/XML/. There are many other descriptions of XML, for example: http://en.wikipedia.org/wiki/XML

2.2. NeXus Introduction 15

http://www.w3.org/XML/
http://en.wikipedia.org/wiki/XML

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

NeXus as a Common Data Exchange Format By the late 1980s, it had become common practice for a
scientific instrument or facility to define its own data format, often at the convenience of the local computer
system. Data from these facilities were not easily interchanged due to various differences in computer
systems and the compression schemes of binary data. It was necessary to contact the facility to obtain a
description so that one could write an import routine in software. Experience with facilities closing (and
subsequent lack of access to information describing the facility data format) revealed a significant limitation
with this common practice. Further, there existed a N * N number of conversion routines necessary to
convert data between various formats. In N separate file formats (page 16), circles represent different data
file formats while arrows represent conversion routines. Note that the red circle only maps to one other
format.

Figure 2.1: N separate file formats

One early idea has been for NeXus to become the common data exchange format, and thereby reduce the
number of data conversion routines from N * N down to 2N, as show in N separate file formats joined by a
common NeXus converter (page 16).

Figure 2.2: N separate file formats joined by a common NeXus converter

16 Chapter 2. NeXus: User Manual

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

Defined dictionary of terms A necessary feature of a standard for the interchange of scientific data is a
defined dictionary (or lexicography) of terms. This dictionary declares the expected spelling and meaning
of terms when they are present so that it is not necessary to search for all the variant forms of energy when
it is used to describe data (e.g., E, e, keV, eV, nrg, ...).

NeXus recognized that each scientific specialty has developed a unique dictionary and needs to categorize
data using those terms. The NeXus Application Definitions provide the means to document the lexicography
for use in data files of that scientific specialty.

2.2.2 NAPI: The NeXus Application Programming Interface

The NeXus API consists of routines to read and write NeXus data files. It was written to provide a simple
to use and consistent common interface for all supported backends (XML, HDF4 and HDF5) to scientific
programmers and other users of the NeXus Data Standard.

This section will provide a brief overview of the available functionality. Further documentation of the NeXus
Application Programming Interface (NAPI) for bindings to specific programming language can be found in
the NAPI chapter in Volume II of this documentation and obtained from the NeXus development site. 2

For an even more detailed description of the internal workings of NAPI see NeXusIntern.pdf 3 in the NeXus
code repository. That document is written for programmers who want to work on the NAPI itself. If you are
new to NeXus and just want to implement basic file reading or writing you should not start by reading that.

How do I write a NeXus file?

The NeXus Application Program Interface (NAPI) provides a set of subroutines that make it easy to read
and write NeXus files. These subroutines are available in C, Fortran 77, Fortran 90, Java, Python, C++, and
IDL.

The API uses a very simple state model to navigate through a NeXus file. (Compare this example with
NAPI Simple 2-D Write Example (C, F77, F90) (page 93), in the NAPI chapter of Volume II, using the
native HDF5 commands.) When you open a file, the API provides a file handle, which stores the current
location, i.e. which group and/or field is currently open. Read and write operations then act on the currently
open entity. Following the simple example of fig.simple-example, we walk through a schematic of NeXus
program written in C (without any error checking or real data).

Writing a simple NeXus file using NAPI

1 #include "napi.h"
2

3 int main()
4 {
5 NXhandle fileID;
6 NXopen ("NXfile.nxs", NXACC_CREATE, &fileID);

2 http://download.nexusformat.org
3 http://svn.nexusformat.org/code/trunk/doc/api/NeXusIntern.pdf

2.2. NeXus Introduction 17

http://download.nexusformat.org
http://svn.nexusformat.org/code/trunk/doc/api/NeXusIntern.pdf

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

7 NXmakegroup (fileID, "Scan", "NXentry");
8 NXopengroup (fileID, "Scan", "NXentry");
9 NXmakegroup (fileID, "data", "NXdata");

10 NXopengroup (fileID, "data", "NXdata");
11 /* somehow, we already have arrays tth and counts, each length n*/
12 NXmakedata (fileID, "two_theta", NX_FLOAT32, 1, &n);
13 NXopendata (fileID, "two_theta");
14 NXputdata (fileID, tth);
15 NXputattr (fileID, "units", "degrees", 7, NX_CHAR);
16 NXclosedata (fileID); /* two_theta */
17 NXmakedata (fileID, "counts", NX_FLOAT32, 1, &n);
18 NXopendata (fileID, "counts");
19 NXputdata (fileID, counts);
20 NXclosedata (fileID); /* counts */
21 NXclosegroup (fileID); /* data */
22 NXclosegroup (fileID); /* Scan */
23 NXclose (&fileID);
24 return;
25 }

program analysis

1. line 6: Open the file NXfile.nxs with create access (implying write access). NAPI 4 returns a file
identifier of type NXhandle.

2. line 7: Next, we create the NXentry group to contain the scan using NXmakegroup() and then
open it for access using NXopengroup(). 5

3. line 9: The plottable data is contained within an NXdata group, which must also be created and
opened.

4. line 12: To create a field, call NXmakedata(), specifying the data name, type (NX_FLOAT32),
rank (in this case, 1), and length of the array (n). Then, it can be opened for writing. 6

5. line 14: Write the data using NXputdata().

6. line 15: With the field still open, we can also add some data attributes, such as the data units, 7 8

which are specified as a character string (type="NX_CHAR" 9) that is 7 bytes long.

7. line 16: Then we close the field before opening another. In fact, the API will do this automatically if
you attempt to open another field, but it is better style to close it yourself.

8. line 17: The remaining fields in this group are added in a similar fashion. Note that the indentation
whenever a new field or group are opened is just intended to make the structure of the NeXus
file more transparent.

9. line 20: Finally, close the groups (NXdata and NXentry) before closing the file itself.
4 NAPI: NeXus Application Programmer Interface (page 81)
5 See the chapter about NeXus ClassDefinitions-Base for more information.
6 The NeXus Data Types (page 40) section describes the available data types, such as NX_FLOAT32 and NX_CHAR.
7 NeXus Data Units (page 41)
8 The NeXus rule about data units is described in the NeXus Data Units (page 41) section.
9 nxdl-types

18 Chapter 2. NeXus: User Manual

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

How do I read a NeXus file?

Reading a NeXus file works in the same way by traversing the tree with the handle.

This schematic C code will read the two-theta array created in ex.simple.write above. (Again, compare this
example with one in the NAPI chapter of Volume II 10 using the native HDF5 commands.)

Reading a simple NeXus file using NAPI

1 NXopen (’NXfile.nxs’, NXACC_READ, &fileID);
2 NXopengroup (fileID, "Scan", "NXentry");
3 NXopengroup (fileID, "data", "NXdata");
4 NXopendata (fileID, "two_theta");
5 NXgetinfo (fileID, &rank, dims, &datatype);
6 NXmalloc ((void **) &tth, rank, dims, datatype);
7 NXgetdata (fileID, tth);
8 NXclosedata (fileID);
9 NXclosegroup (fileID);

10 NXclosegroup (fileID);
11 NXclose (fileID);

How do I browse a NeXus file?

NeXus files can also be viewed by a command-line browser, nxbrowse, which is included as a helper tool
in the NeXus API (page 17) distribution. The following is an example session of using nxbrowse to view
a data file. The following commands are used in ex.NXbrowse.lrmecs in this session:

Using nxbrowse

1 %> nxbrowse lrcs3701.nxs
2

3 NXBrowse 3.0.0. Copyright (C) 2000 R. Osborn, M. Koennecke, P. Klosowski
4 NeXus_version = 1.3.3
5 file_name = lrcs3701.nxs
6 file_time = 2001-02-11 00:02:35-0600
7 user = EAG/RO
8 NX> dir
9 NX Group : Histogram1 (NXentry)

10 NX Group : Histogram2 (NXentry)
11 NX> open Histogram1
12 NX/Histogram1> dir
13 NX Data : title[44] (NX_CHAR)
14 NX Data : analysis[7] (NX_CHAR)
15 NX Data : start_time[24] (NX_CHAR)

10 native.hdf5.simple.read

2.2. NeXus Introduction 19

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

16 NX Data : end_time[24] (NX_CHAR)
17 NX Data : run_number (NX_INT32)
18 NX Group : sample (NXsample)
19 NX Group : LRMECS (NXinstrument)
20 NX Group : monitor1 (NXmonitor)
21 NX Group : monitor2 (NXmonitor)
22 NX Group : data (NXdata)
23 NX/Histogram1> read title
24 title[44] (NX_CHAR) = MgB2 PDOS 43.37g 8K 120meV E0@240Hz T0@120Hz
25 NX/Histogram1> open data
26 NX/Histogram1/data> dir
27 NX Data : title[44] (NX_CHAR)
28 NX Data : data[148,750] (NX_INT32)
29 NX Data : time_of_flight[751] (NX_FLOAT32)
30 NX Data : polar_angle[148] (NX_FLOAT32)
31 NX/Histogram1/data> read time_of_flight
32 time_of_flight[751] (NX_FLOAT32) = [1900.000000 1902.000000 1904.000000 ...]
33 units = microseconds
34 long_name = Time-of-Flight [microseconds]
35 NX/Histogram1/data> read data
36 data[148,750] (NX_INT32) = [1 1 0 ...]
37 units = counts
38 signal = 1
39 long_name = Neutron Counts
40 axes = polar_angle:time_of_flight
41 NX/Histogram1/data> close
42 NX/Histogram1> close
43 NX> quit

program analysis

1. line 1: Start nxbrowse from the UNIX command line and open file lrcs3701.nxs from
IPNS/LRMECS.

2. line 8: List the contents of the current group.

3. line 11: Open the NeXus group Histogram1.

4. line 23: Print the contents of the NeXus data labeled title.

5. line 41: Close the current group.

6. line 43: Quits nxbrowse.

The source code of nxbrowse 11 provides an example of how to write a NeXus reader. The test programs
included in the NeXus API (page 17) may also be useful to study.

11 https://svn.nexusformat.org/code/trunk/applications/NXbrowse/NXbrowse.c

20 Chapter 2. NeXus: User Manual

https://svn.nexusformat.org/code/trunk/applications/NXbrowse/NXbrowse.c

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

2.3 NeXus Design

This chapter actually defines the rules to use for writing valid NeXus files. An explanation of NeXus objects
is followed by the definition of NeXus coordinate systems, the rules for structuring files and the rules for
storing single items of data.

The structure of NeXus files is extremely flexible, allowing the storage both of simple data sets, such as
a single data array and its axes, and also of highly complex data, such as the simulation results or an
entire multi-component instrument. This flexibility is a necessity as NeXus strives to capture data from a
wild variety of applications in X-ray, muSR and neutron scattering. The flexibility is achieved through a
hierarchical structure, with related fields collected together into groups, making NeXus files easy to navigate,
even without any documentation. NeXus files are self-describing, and should be easy to understand, at least
by those familiar with the experimental technique.

Note: In this manual, we use the terms field, data field, and data item synonymously to be
consistent with their meaning between NeXus data file instances and NXDL specification files.

2.3.1 NeXus Objects and Terms

Before discussing the design of NeXus in greater detail it is necessary to define the objects and terms used
by NeXus. These are:

Data Groups (page 21) Group data fields and other groups together. Groups represent levels in the NeXus
hierarchy

Data Fields (page 22) Multidimensional arrays and scalars representing the actual data to be stored

Data Attributes (page 22) Additional metadata which can be assigned to groups or data fields

Links (page 23) Elements which point to data stored in another place in the file hierarchy

NeXus Base Classes (page 24) Dictionaries of names possible in the various types of NeXus groups

NeXus Application Definitions (page 25) Describe the minimum content of a NeXus file for a particular
usage case

In the following sections these elements of NeXus files will be defined in more detail.

Data Groups

NeXus files consist of data groups, which contain fields and/or other groups to form a hierarchical structure.
This hierarchy is designed to make it easy to navigate a NeXus file by storing related fields together. Data
groups are identified both by a name, which must be unique within a particular group, and a class. There
can be multiple groups with the same class but they must have different names (based on the HDF rules).

For the class names used with NeXus data groups the prefix NX is reserved. Thus all NeXus class names
start with NX.

2.3. NeXus Design 21

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

Data Fields

Data fields contain the essential information stored in a NeXus file. They can be scalar values or multidi-
mensional arrays of a variety of sizes (1-byte, 2-byte, 4-byte, 8-byte) and types (integers, floats, characters).
The fields may store both experimental results (counts, detector angles, etc), and other information associ-
ated with the experiment (start and end times, user names, etc). Data fields are identified by their names,
which must be unique within the group in which they are stored.

Examples of data fields

file_name (NX_CHAR) File name of original NeXus file to assist in identification if the
external name has been changed

file_time (ISO 8601) Date and time of file creation

file_update_time (ISO 8601) Date and time of last file change at close

NeXus_version (NX_CHAR) Version of NeXus API used in writing the file

creator (NX_CHAR) Facility or program where the file originated

Data Attributes

Attributes are extra (meta-)information that are associated with particular fields. They are used to annotate
the data, e.g. with physical units or calibration offsets, and may be scalar numbers or character strings.
In addition, NeXus uses attributes to identify plottable data and their axes, etc. A description of possible
attributes can be found in table data attributes. Finally, NeXus files themselves have global attributes which
are listed in the global attributes. table that identify the NeXus version, file creation time, etc. Attributes
are identified by their names, which must be unique in each field.

Examples of data attributes

units (NX_CHAR) Data units given as character strings, must conform to the NeXus units
standard. See the NeXus Data Units (page 41) section for details.

signal (NX_INT) Defines which data set contains the signal to be plotted, use
signal="1" for main signal

axes (NX_CHAR) axes defines the names of the dimension scales for this data set as a colon-
delimited list. Note that some legacy data files may use a comma as delimiter.

For example, suppose data is an array with elements data[j][i] (C) or data(i,j)
(Fortran), with dimension scales time_of_flight[i] and polar_angle[j], then
data would have an attribute axes="polar_angle:time_of_flight" in addi-
tion to an attribute signal="1".

axis (NX_INT) The original way of designating data for plotting, now superceded by the
axes attribute. This defines the rank of the signal data for which this data set is a dimen-
sion scale in order of the fastest varying index (see a longer discussion in the section on

22 Chapter 2. NeXus: User Manual

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

NXdata structure), i.e. if the array being stored is data, with elements data[j][i]
in C and data(i,j) in Fortran, axis would have the following values: ith dimension
(axis="1"), jth dimension (axis="2"), etc.

primary (NX_INT32) Defines the order of preference for dimension scales which apply to
the same rank of signal data. Use primary="1" to indicate preferred dimension scale

long_name (NX_CHAR) Defines title of signal data or axis label of dimension scale

calibration_status (NX_CHAR) Defines status of data value - set to Nominal or
Measured

offset (NX_INT) Rank values off offsets to use for each dimension if the data is not in C
storage order

stride (NX_INT) Rank values of steps to use when incrementing the dimension

vector (NX_FLOAT) 3 values describing the axis of rotation or the direction of translation

interpretation (NX_CHAR) Describes how to display the data. Allowed values include:

• scaler (0-D data)

• spectrum (1-D data)

• image (2-D data)

• vertex (3-D data)

Links

Links are pointers to existing data somewhere else. The concept is very much like symbolic links in a unix
filesystem. The NeXus definition sometimes requires to have access to the same data in different groups in
the same file. For example: detector data is stored in the NXinstrument/NXdetector group but may
be needed in NXdata for automatic plotting. Rather then replicating the data, NeXus uses links in such
situations. See the figure (page 23) for a more descriptive representation of the concept of linking.

Figure 2.3: Linking in a NeXus file

2.3. NeXus Design 23

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

NeXus also allows for links to external files. Here is an example (from Diamond Light Source) of an external
file link in HDF5:

Example of linking to data in an external HDF5 file

1 EXTERNAL_LINK "data" {
2 TARGETFILE "/dls/i22/data/2012/sm7594-1/i22-69201-Pilatus2M.h5"
3 TARGETPATH "entry/instrument/detector/data"
4 }

NeXus Base Classes

Data groups often describe objects in the experiment (monitors, detectors, monochromators, etc.), so that
the contents (both data fields and/or other data groups) comprise the properties of that object. NeXus has
defined a set of standard objects, or base classes, out of which a NeXus file can be constructed. This is each
data group is identified by a name and a class. The group class, defines the type of object and the properties
that it can contain, whereas the group name defines a unique instance of that class. These classes are defined
in XML using the NeXus Definition Language (NXDL) format. All NeXus class types adopted by the NIAC
must begin with NX. Classes not adopted by the NIAC must not start with NX.

Note: NeXus base classes are the components used to build the NeXus data structure.

Not all classes define physical objects. Some refer to logical groupings of experimental information, such as
plottable data, sample environment logs, beam profiles, etc. There can be multiple instances of each class.
On the other hand, a typical NeXus file will only contain a small subset of the possible classes.

NeXus base classes are not proper classes in the same sense as used in object oriented programming lan-
guages. In fact the use of the term classes is actually misleading but has established itself during the de-
velopment of NeXus. NeXus base classes are rather dictionaries of field names and their meanings which
are permitted in a particular NeXus group implementing the NeXus class. This sounds complicated but
becomes easy if you consider that most NeXus groups describe instrument components. Then for example,
a NXmonochromator base class describes all the possible field names which NeXus allows to be used to
describe a monochromator.

Most NeXus base classes represent instrument components. Some are used as containers to structure in-
formation in a file (NXentry, NXcollection, NXinstrument, NXprocess, NXparameter). But
there are some base classes which have special uses which need to be mentioned here:

NXdata NXdata is used to identify the default plottable data. The notion of a default plot of data is a basic
motivation of NeXus.

NXlog NXlog is used to store time stamped data like the log of a temperature controller. Basically you
give a start time, and arrays with a difference in seconds to the start time and the values read.

NXnote This group provides a place to store general notes, images, video or whatever. A mime type is
stored together with a binary blob of data. Please use this only for auxiliary information, for example
an image of your sample, or a photo of your boss.

24 Chapter 2. NeXus: User Manual

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

NXgeometry NXgeometry and its subgroups NXtranslation, NXorientation, NXshape are
used to store absolute positions in the laboratory coordinate system or to define shapes.

These groups can appear anywhere in the NeXus hierarchy, where needed. Preferably close to the com-
ponent they annotate or in a NXcollection. All of the base classes are documented in the reference
manual.

NXdata Facilitates Automatic Plotting

The most notable special base class (or group in NeXus) is NXdata. NXdata is the answer to a basic
motivation of NeXus to facilitate automatic plotting of data. NXdata is designed to contain the main dataset
and its associated dimension scales (axes) of a NeXus data file. The usage scenario is that an automatic data
plotting program just opens a NXentry and then continues to search for any NXdata groups. These
NXdata groups represent the plottable data. Here is the way an automatic plotting program ought to work:

1. Search for NXentry groups

2. Open an NXentry

3. Search for NXdata groups

4. Open an NXdata group

5. Identify the plottable data.

(a) Search for a dataset with attribute signal=1. This is your main dataset. (There should be only
one dataset that matches.)

(b) Try to read the axes attribute of the main dataset, if it exists.

i. The value of axes is a colon- or comma-separated list of the datasets describing the di-
mension scales (such as axes="polar_angle:time_of_flight").

ii. Parse axes and open the datasets to describe your dimension scales

(c) If axes does not exist:

i. Search for datasets with attributes axis=1, axis=2, etc. These are the datasets describing
your axis. There may be several datasets for any axis, i.e. there may be multiple datasets
with the attribute axis=1. Among them the dataset with the attribute primary=1 is the
preferred one. All others are alternative dimension scales.

ii. Open the datasets to describe your dimension scales.

6. Having found the default plottable data and its dimension scales: make the plot

NeXus Application Definitions

The objects described so far provide us with the means to store data from a wide variety of instruments,
simulations or processed data as resulting from data analysis. But NeXus strives to express strict standards
for certain applications of NeXus too. The tool which NeXus uses for the expression of such strict standards
is the NeXus Application Definition. A NeXus Application Definition describes which groups and data
items have to be present in a file in order to properly describe an application of NeXus. For example for

2.3. NeXus Design 25

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

describing a powder diffraction experiment. Typically an application definition will contain only a small
subset of the many groups and fields defined in NeXus. NeXus application definitions are also expressed in
the NeXus Definition Language (NXDL). A tool exists which allows one to validate a NeXus file against a
given application definition.

Note: NeXus application definitions define the minimum information necessary to satisfy data analysis or
other data processing.

Another way to look at a NeXus application definition is as a contract between a file producer (writer) and
a file consumer (reader).

The contract reads: If you write your files following a particular NeXus application definition,
I can process these files with my software.

Yet another way to look at a NeXus application definition is to understand it as an interface definition
between data files and the software which uses this file. Much like an interface in the Java or other modern
object oriented programming languages.

In contrast to NeXus base classes, NeXus supports inheritance in application definitions.

Please note that a NeXus Application Definition will only define the bare minimum of data necessary to
perform common analysis with data. Practical files will nearly always contain more data. One of the
beauties of NeXus is that it is always possible to add more data to a file without breaking its compliance
with its application definition.

2.3.2 NeXus Coordinate Systems

NeXus uses the *McStas coordinate system* as its laboratory coordinate system.

Coordinate systems in NeXus have undergone significant development. Initially, just motor positions of
relevant motors were stored without further standardization. This soon proved to be to little and the NeXus
polar coordinate system was developed. This system still is very close to angles meaningful to an instru-
ment scientist but allows to define general positions of components easily. Then users from the simulation
community approached the NeXus team and asked for a means to store absolute coordinates. This was
implemented through the use of the NXgeometry class on top of the McStas system. We soon learned that
all the things we do can be expressed through the McStas coordinate system. So it became the reference
coordinate system for NeXus. NXgeometry was expanded to allow the description of shapes when the
demand came up. Later, members of the CIF team convinced the NeXus team of the beauty of transfor-
mation matrices and NeXus was enhanced to store the necessary information to fully map CIF concepts.
Not much had to be changed though as we choose to document the existing angles in CIF terms. The CIF
system allows to store arbitrary operations and nevertheless calculate absolute coordinates in the laboratory
coordinate system. It also allows to convert from local, for example detector coordinate systems, to absolute
coordinates in the laboratory system.

McStas and NXgeometry System

As stated above, NeXus uses the *McStas coordinate system* as its laboratory coordinate system. The
instrument is given a global, absolute coordinate system where the z axis points in the direction of the

26 Chapter 2. NeXus: User Manual

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

incident beam, the x axis is perpendicular to the beam in the horizontal plane pointing left as seen from the
source, and the y axis points upwards. See below for a drawing of the McStas coordinate system. The origin
of this coordinate system is the sample position or, if this is ambiguous, the center of the sample holder
with all angles and translations set to zero. The McStas coordinate system is illustrated in figure McStas
Coordinate System.

Figure 2.4: The McStas Coordinate System

Note: The NeXus definition of +z is opposite to that in the IUCr International Tables for Crystallography,
volume G, and consequently, +x is also reversed.

The NeXus NXgeometry class directly uses the McStas coordinate system. NXgeometry classes can
appear in any component in order to specify its position. The suggested name to use is geometry. In
NXgeometry the NXtranslation/values field defines the absolute position of the component in the
McStas coordinate system. The NXorientation/value field describes the orientation of the compo-
nent as a vector of in the McStas coordinate system.

Simple (Spherical Polar) Coordinate System

In this system, the instrument is considered as a set of components through which the incident beam passes.
The variable distance is assigned to each component and represents the effective beam flight path length
between this component and the sample. A sign convention is used where negative numbers represent
components pre-sample and positive numbers components post-sample. At each component there is local
spherical coordinate system with the angles polar_angle and azimuthal_angle. The size of the sphere is the
distance to the previous component.

In order to understand this spherical polar coordinate system it is helpful to look initially at the common
condition that azimuthal_angle is zero. This corresponds to working directly in the horizontal scattering
plane of the instrument. In this case polar_angle maps directly to the setting commonly known as two
theta (2θ). Now, there are instruments where components live outside of the scattering plane. Most notably
detectors. In order to describe such components we first apply the tilt out of the horizontal scattering plane
as the azimuthal_angle. Then, in this tilted plane, we rotate to the component. The beauty of this is that
polar_angle is always two theta. Which, in the case of a component out of the horizontal scattering plane,

2.3. NeXus Design 27

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

is not identical to the value read from the motor responsible for rotating the component. This situation is
shown in Polar Coordinate System (page 28).

Figure 2.5: NeXus Simple (Spherical Polar) Coordinate System

Coordinate Transformations

Another way to look at coordinates is through the use of transformation matrices. In this world view, the
absolute position of a component or a detector pixel with respect to the laboratory coordinate system is
calculated by applying a series of translations and rotations. These operations are commonly expressed as
transformation matrices and their combination as matrix multiplication. A very important aspect is that the
order of application of the individual operations does matter. Another important aspect is that any operation
transforms the whole coordinate system and gives rise to a new local coordinate system. The mathematics
behind this is well known and used in such applications such as industrial robot control, space flight and
computer games. The beauty in this comes from the fact that the operations to apply map easily to instrument
settings and constants. It is also easy to analyze the contribution of each individual operation: this can be
studied under the condition that all other operations are at a zero setting.

In order to use coordinate transformations, several morsels of information need to be known:

Type The type of operation: rotation or translation

Direction The direction of the translation or the direction of the rotation axis

Value The angle of rotation or the length of the translation

Order The order of operations to apply to move a component into its place.

How NeXus describes the order of operations to apply has not yet been decided. The authors favourite
scheme is to use a special field at each instrument component, named transform which describes the op-
erations to apply to get the component into its position as a list of colon separated paths to the operations
to apply relative to the current NXentry. For paths in the same group, only the name need to be given.
Detectors may need two such fields: the transform field to get the detector as a whole into its position and a
transform_pixel field which describes how the absolute position of a detector pixel can be calculated.

28 Chapter 2. NeXus: User Manual

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

For the NeXus spherical coordinate system, the order is implicit and is given in the next example.

implicit order of NeXus spherical coordinate system

azimuthal_angle:polar_angle:distance

This is also a nice example of the application of transformation matrices:

1. You first apply azimuthal_angle as a rotation around z. This rotates the whole coordinate out of
the plane.

2. Then you apply polar_angle as a rotation around y in the tilted coordinate system.

3. This also moves the direction of the z vector. Along which you translate the component to place by
distance.

2.3.3 Rules and Underlying File Formats

Rules for Structuring Information in NeXus Files

All NeXus files contain one or many groups of type NXentry at root level. Many files contain only one
NXentry group, then the name is entry. The NXentry level of hierarchy is there to support the storage
of multiple related experiments in one file. Or to allow the NeXus file to serve as a container for storing
a whole scientific workflow from data acquisition to publication ready data. Also, NXentry class groups
can contain raw data or processed data. For files with more than one NXentry group, since HDF requires
that no two items at the same level in an HDF file may have the same name, the NeXus fashion is to assign
names with an incrementing index appended, such as entry1, entry2, entry3, etc.

In order to illustrate what is written in the text, example hierarchies like the one in figure Raw Data (page 29)
are provided.

Content of a Raw Data NXentry Group

An example raw data hierarchy is shown in figure Raw Data (page 29) (only showing the relevant parts of
the data hierarchy). In the example shown, the data field in the NXdata group is linked to the 2-D detector
data (a 512x512 array of 32-bit integers) which has the attribute signal=1. Note that [,] represents a
2D array.

NeXus Raw Data Hierarchy

1 entry:NXentry
2 instrument:NXinstrument
3 source:NXsource
4
5 detector:NXdetector
6 data:NX_INT32[512,512]
7 @signal = 1

2.3. NeXus Design 29

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

8 sample:NXsample
9 control:NXmonitor

10 data:NXdata
11 data --> /entry/instrument/detector/data

An NXentry describing raw data contains at least a NXsample, one NXmonitor, one NXdata and
a NXinstrument group. It is good practice to use the names sample for the NXsample group,
control for the NXmonitor group holding the experiment controlling monitor and instrument for
the NXinstrument group. The NXinstrument group contains further groups describing the individual
components of the instrument as appropriate.

The NXdata group contains links to all those data items in the NXentry hierarchy which are required
to put up a default plot of the data. As an example consider a SAXS instrument with a 2D detector. The
NXdata will then hold a link to the detector image. If there is only one NXdata group, it is good practice
to name it data. Otherwise, the name of the detector bank represented is a good selection.

Content of a processed data NXentry group

Processed data, see figure Processed Data (page 30), in this context means the results of a data reduction or
data analysis program. Note that [] represents a 1D array.

NeXus Processed Data Hierarchy

1 entry:NXentry
2 reduction:NXprocess
3 program_name = "pyDataProc2010"
4 version = "1.0a"
5 input:NXparameter
6 filename = "sn2013287.nxs"
7 sample:NXsample
8 data:NXdata
9 data

10 @signal = 1

NeXus stores such data in a simplified NXentry structure. A processed data NXentry has at minimum a
NXsample, a NXdata and a NXprocess group. Again the preferred name for the NXsample group is
sample. In the case of processed data, the NXdata group holds the result of the processing together with
the associated axis data. The NXprocess group holds the name and version of the program used for this
processing step and further NXparameter groups. These groups ought to contain the parameters used for
this data processing step in suitable detail so that the processing step can be reproduced.

Optionally a processed data NXentry can hold a NXinstrument group with further groups holding
relevant information about the instrument. The preferred name is again instrument. Whereas for a raw
data file, NeXus strives to capture as much data as possible, a NXinstrument group for processed data
may contain a much-reduced subset.

30 Chapter 2. NeXus: User Manual

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

NXsubentry or Multi-Method Data

Especially at synchrotron facilities, there are experiments which perform several different methods on the
sample at the same time. For example, combine a powder diffraction experiment with XAS. This may
happen in the same scan, so the data needs to be grouped together. A suitable NXentry would need to
adhere to two different application definitions. This leads to name clashes which cannot be easily resolved.
In order to solve this issue, the following scheme was implemented in NeXus:

• The complete beamline (all data) is stored in an appropriate hierarchy in an NXentry.

• The NXentry group contains further NXsubentry groups, one for each method. Each
NXsubentry group is constructed like a NXentry group. It contains links to all those data items
required to fulfill the application definition for the particular method it represents.

See figure NeXus Multi Method Hierarchy (page 31) for an example hierarchy. Note that [,] represents a
2D array.

NeXus Multi Method Hierarchy

1 entry:NXentry
2 user:NXuser
3 sample:NXsample
4 instrument:NXinstument
5 SASdet:NXdetector
6 data:[,]
7 @signal = 1
8 fluordet:NXdetector
9 data:[,]

10 @signal = 1
11 large_area:NXdetector
12 data:[,]
13 SAS:NXsubentry
14 definition = "NXsas"
15 instrument:NXinstrument
16 detector:NXdetector
17 data --> /entry/instrument/SASdet/data
18 data:NXdata
19 data --> /entry/instrument/SASdet/data
20 Fluo:NXsubentry
21 definition = "NXFluo"
22 instrument:NXinstrument
23 detector --> /entry/instrument/fluordet/data
24 detector2 --> /entry/instrument/large_area/data
25 data:NXdata
26 detector --> /entry/instrument/fluordet/data

Rules for Special Cases

Scans Scans are difficult to capture because they have great variety. Basically, any variable can be scanned.
Such behaviour cannot be captured in application definitions. Therefore NeXus solves this difficulty with a

2.3. NeXus Design 31

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

set of rules. In this section, NP is used as a symbol for the number of scan points.

• The scan dimension NP is always the first dimension of any multi-dimensional dataset. The reason
for this is that HDF allows the first dimension of a dataset to be unlimited. Which means, that data
can be appended to the dataset during the scan.

• All data is stored as arrays of dimensions NP, original dimensions of the data at the appropriate
position in the NXentry hierarchy.

• The NXdata group has to contain links to all variables varied during the scan and the detector data.
Thus the NXdata group mimics the usual tabular representation of a scan.

• Datasets in an NXdata group must contain the proper attributes to enable the default plotting, as
described in the section titled NXdata Facilitates Automatic Plotting (page 25).

Simple scan Examples may be in order here. Let us start with a simple case, the sample is rotated around
its rotation axis and data is collected in a single point detector. See figure Simple Scan (page 32) for an
overview. Then we have:

• A dataset at NXentry/NXinstrument/NXdetector/data of length NP contain-
ing the count data.

• A dataset at NXentry/NXsample/rotation_angle of length NP containing the
positions of rotation_angle at the various steps of the scan.

• NXdata contains links to:

– NXentry/NXinstrument/NXdetector/data

– NXentry/NXsample/rotation_angle

• All other data fields have their normal dimensions.

NeXus Simple Scan Example

1 entry:NXentry
2 instrument:NXinstrument
3 detector:NXdetector
4 data[NP]
5 @signal = 1
6 sample:NXsample
7 rotation_angle[NP]
8 @axis=1
9 control:NXmonitor

10 data[NP]
11 data:NXdata
12 data --> /entry/instrument/detector/data
13 rotation_angle --> /entry/sample/rotation_angle

Simple scan with area detector The next example is the same scan but with an
area detector with xsize times ysize pixels. The only thing which changes is that

32 Chapter 2. NeXus: User Manual

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

/NXentry/NXinstrument/NXdetector/data will have the dimensions NP, xsize, ysize.
See figure Simple Scan with Area Detector (page 33) for an overview.

NeXus Simple Scan Example with Area Detector

1 entry:NXentry
2 instrument:NXinstrument
3 detector:NXdetector
4 data:[NP,xsize,ysize]
5 @signal = 1
6 sample:NXsample
7 rotation_angle[NP]
8 @axis=1
9 control:NXmonitor

10 data[NP]
11 data:NXdata
12 data --> /entry/instrument/detector/data
13 rotation_angle --> /entry/sample/rotation_angle

Complex hkl scan The next example involves a complex movement along an axis in reciprocal space
which requires mutiple motors of a four circle diffractometer to be varied during the scan. We then have:

• A dataset at NXentry/NXinstrument/NXdetector/data of length NP containing the count
data.

• A dataset at NXentry/NXinstrument/NXdetector/polar_angle of length NP containing
the positions of the detector’s polar_angle at the various steps of the scan.

• A dataset at NXentry/NXsample/rotation_angle of length NP containing the positions of
rotation_angle at the various steps of the scan.

• A dataset at NXentry/NXsample/chi of length NP containing the positions of chi at the various
steps of the scan.

• A dataset at NXentry/NXsample/phi of length NP containing the positions of phi at the various
steps of the scan.

• A dataset at NXentry/NXsample/h of length NP containing the positions of the reciprocal coor-
dinate h at the various steps of the scan.

• A dataset at NXentry/NXsample/k of length NP containing the positions of the reciprocal coor-
dinate k at the various steps of the scan.

• A dataset at NXentry/NXsample/l of length NP containing the positions of the reciprocal coor-
dinate l at the various steps of the scan.

• NXdata contains links to:

– NXentry/NXinstrument/NXdetector/data

– NXentry/NXinstrument/NXdetector/polar_angle

– NXentry/NXsample/rotation_angle

2.3. NeXus Design 33

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

– NXentry/NXsample/chi

– NXentry/NXsample/phi

– NXentry/NXsample/h

– NXentry/NXsample/k

– NXentry/NXsample/l

The datasets in NXdata must have the appropriate attributes as described in the axis location section.

• All other data fields have their normal dimensions.

NeXus Complex hkl Scan

1 entry:NXentry
2 instrument:NXinstrument
3 detector:NXdetector
4 data[NP]
5 @signal = 1
6 polar_angle[NP]
7 @axis = 1
8 name
9 sample:NXsample

10 name
11 rotation_angle[NP]
12 @axis=1
13 chi[NP]
14 @axis=1
15 phi[NP]
16 @axis=1
17 h[NP]
18 @axis=1
19 @primary=1
20 k[NP]
21 @axis=1
22 l[NP]
23 @axis=1
24 control:NXmonitor
25 data[NP]
26 data:NXdata
27 data --> /entry/instrument/detector/data
28 rotation_angle --> /entry/sample/rotation_angle
29 chi --> /entry/sample/chi
30 phi --> /entry/sample/phi
31 polar_angle --> /entry/instrument/detector/polar_angle
32 h --> /entry/sample/h
33 k --> /entry/sample/k
34 l --> /entry/sample/l

Multi-parameter scan: XAS Data can be stored almost anywhere in the NeXus tree. While the previous
examples showed data arrays in either NXdetector or NXsample, this example demonstrates that data

34 Chapter 2. NeXus: User Manual

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

can be stored in other places. Links are used to reference the data.

The example is for X-ray Absorption Spectroscopy (XAS) data where the monochromator energy is step-
scanned and counts are read back from detectors before (I0) and after (I) the sample. These energy scans
are repeated at a sequence of sample temperatures to map out, for example, a phase transition. While it
is customary in XAS to plot log(I0/I), we show them separately here in two different NXdata groups to
demonstrate that such things are possible. Note that the length of the 1-D energy array is NE while the length
of the 1-D temperature array is NT

NeXus Multi-parameter scan: XAS

1 entry:NXentry
2 instrument:NXinstrument
3 I:NXdetector
4 data:NX_NUMBER[NE,NT]
5 @signal = 1
6 @axes = "energy:temperature"
7 energy --> /entry/monochromator/energy
8 temperature --> /entry/sample/temperature
9 I0:NXdetector

10 data:NX_NUMBER[NE,NT]
11 @signal = 1
12 @axes = "energy:temperature"
13 energy --> /entry/monochromator/energy
14 temperature --> /entry/sample/temperature
15 sample:NXsample
16 temperature:NX_NUMBER[NT]
17 monochromator:NXmonochromator
18 energy:NX_NUMBER[NE]
19 I_data:NXdata
20 data --> /entry/instrument/I/data
21 energy --> /entry/monochromator/energy
22 temperature --> /entry/sample/temperature
23 I0_data:NXdata
24 data --> /entry/instrument/I00/data
25 energy --> /entry/monochromator/energy
26 temperature --> /entry/sample/temperature

Rastering Rastering is the process of making experiments at various locations in the sample volume.
Again, rasterisation experiments can be variable. Some people even raster on spirals! Rasterisation experi-
ments are treated the same way as described above for scans. Just replace NP with P, the number of raster
points.

Special rules apply if a rasterisation happens on a regular grid of size xraster, yraster. Then the
variables varied in the rasterisation will be of dimensions xraster, yraster and the detector data of
dimensions xraster, yraster, (orginal dimensions) of the detector. For example, an area
detector of size xsize, ysize then it is stored with dimensions xraster, yraster, xsize,
ysize.

2.3. NeXus Design 35

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

Warning: Be warned: if you use the 2D rasterisation method with xraster, yraster you may
end up with invalid data if the scan is aborted prematurely. This cannot happen if the first method is
used.

NXcollection On demand from the community, NeXus introduced a more informal method of storing
information in a NeXus file. This is the NXcollection class which can appear anywhere underneath
NXentry. NXcollection is a container for holding other data. The foreseen use is to document collec-
tions of similar data which do not otherwise fit easily into the NXinstrument or NXsample hierarchy,
such as the intent to record all motor positions on a synchrotron beamline. Thus, NXcollection serves
as a quick point of access to data for an instrument scientist or another expert. NXcollection is also a feature
for those who are t0o lazy to build up the complete NeXus hierarchy. An example usage case is documented
in figure NXcollection example.

NXcollection Example

1 entry:NXentry
2 positioners:NXcollection
3 mxx:NXpositioner
4 mzz:NXpositioner
5 sgu:NXpositioner
6 ttv:NXpositioner
7 hugo:NXpositioner
8
9 scalars:NXcollection

10 title (dataset)
11 lieselotte (dataset)
12 ...
13 detectors:NXcollection
14 Pilatus:NXdata
15 MXX-45:NXdata
16

Rules for Storing Data Items in NeXus Files

This section describes the rules which apply for storing single data fields in data files.

Naming Conventions

Group and field Names used within NeXus follow a naming convention which is made up from the following
rules: The names of NeXus group and field items must only contain a restricted set of characters. This set
may be described by this regular expression syntax regular expression regular expression syntax:

36 Chapter 2. NeXus: User Manual

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

Regular expression pattern for NXDL group and field names

1 [A-Za-z_][\\w_]*

Note that this name pattern starts with a letter (upper or lower case) or “_” (underscore), then letters, num-
bers, and “_” and is limited to no more than 63 characters (imposed by the HDF5 rules for names).

Sometimes it is necessary to combine words in order to build a descriptive name for a data field or a group.
In such cases lowercase words are connected by underscores.

1 number_of_lenses

For all data fields, only names from the NeXus base class dictionaries should be used. If a data field name
or even a complete component is missing, please suggest the addition to the NIAC. The addition will usually
be accepted provided it is not a duplication of an existing field and adequately documented.

Note: The NeXus base classes provide a comprehensive dictionary of terms that can be used
for each class. The expected spelling and definition of each term is specified in the base classes.
It is not required to provide all the terms specified in a base class. Terms with other names are
permitted but might not be recognized by standard software. Rather than persist in using names
not specified in the standard, please suggest additions to the NIAC.

NeXus Array Storage Order

NeXus stores multi-dimensional arrays of physical values in C language storage order, where the last di-
mension is the fastest varying. This is the rule. Good reasons are required to deviate from this rule.

It is possible to store data in storage orders other than C language order.

As well it is possible to specify that the data needs to be converted first before being useful. Consider one
situation, when data must be streamed to disk as fast as possible and conversion to C language storage order
causes unnecessary latency. This case presents a good reason to make an exception to the standard rule.

Non C Storage Order In order to indicate that the storage order is different from C storage order two
additional data set attributes, offset and stride, have to be stored which together define the storage layout
of the data. Offset and stride contain rank numbers according to the rank of the multidimensional data set.
Offset describes the step to make when the dimension is multiplied by 1. Stride defines the step to make
when incrementing the dimension. This is best explained by some examples.

Offset and Stride for 1 D data:

1 * raw data = 0 1 2 3 4 5 6 7 8 9
2 size[1] = { 10 } // assume uniform overall array dimensions
3

4 * default stride:
5 stride[1] = { 1 }
6 offset[1] = { 0 }

2.3. NeXus Design 37

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

7 for i:
8 result[i]:
9 0 1 2 3 4 5 6 7 8 9

10

11 * reverse stride:
12 stride[1] = { -1 }
13 offset[1] = { 9 }
14 for i:
15 result[i]:
16 9 8 7 6 5 4 3 2 1 0

Offset and Stride for 2D Data

1 * raw data = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
2 size[2] = { 4, 5 } // assume uniform overall array dimensions
3

4 * row major (C) stride:
5 stride[2] = { 5, 1 }
6 offset[2] = { 0, 0 }
7 for i:
8 for j:
9 result[i][j]:

10 0 1 2 3 4
11 5 6 7 8 9
12 10 11 12 13 14
13 15 16 17 18 19
14

15 * column major (Fortran) stride:
16 stride[2] = { 1, 4 }
17 offset[2] = { 0, 0 }
18 for i:
19 for j:
20 result[i][j]:
21 0 4 8 12 16
22 1 5 9 13 17
23 2 6 10 14 18
24 3 7 11 15 19
25

26 * "crazy reverse" row major (C) stride:
27 stride[2] = { -5, -1 }
28 offset[2] = { 4, 5 }
29 for i:
30 for j:
31 result[i][j]:
32 19 18 17 16 15
33 14 13 12 11 10
34 9 8 7 6 5
35 4 3 2 1 0

38 Chapter 2. NeXus: User Manual

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

Offset and Stride for 3D Data

1 * raw data = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
2 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
3 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
4 size[3] = { 3, 4, 5 } // assume uniform overall array dimensions
5

6 * row major (C) stride:
7 stride[3] = { 20, 5, 1 }
8 offset[3] = { 0, 0, 0 }
9 for i:

10 for j:
11 for k:
12 result[i][j][k]:
13 0 1 2 3 4
14 5 6 7 8 9
15 10 11 12 13 14
16 15 16 17 18 19
17

18 20 21 22 23 24
19 25 26 27 28 29
20 30 31 32 33 34
21 35 36 37 38 39
22

23 40 41 42 43 44
24 45 46 47 48 49
25 50 51 52 53 54
26 55 56 57 58 59
27

28 * column major (Fortran) stride:
29 stride[3] = { 1, 3, 12 }
30 offset[3] = { 0, 0, 0 }
31 for i:
32 for j:
33 for k:
34 result[i][j][k]:
35 0 12 24 36 48
36 3 15 27 39 51
37 6 18 30 42 54
38 9 21 33 45 57
39

40 1 13 25 37 49
41 4 16 28 40 52
42 7 19 31 43 55
43 10 22 34 46 58
44

45 2 14 26 38 50
46 5 17 29 41 53
47 8 20 32 44 56
48 11 23 35 47 59

2.3. NeXus Design 39

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

NeXus Data Types

description matching regular expression
integer NX_INT(8|16|32|64)
floating-point NX_FLOAT(32|64)
array (\\[0-9\\])?
valid item name ^[A-Za-z_][A-Za-z0-9_]*$
valid class name ^NX[A-Za-z0-9_]*$

NeXus supports numeric data as either integer or floating-point numbers. A number follows that indicates
the number of bits in the word. The table above shows the regular expressions that matches the data type
specifier.

integers NX_INT8, NX_INT16, NX_INT32, or NX_INT64

floating-point numbers NX_FLOAT32 or NX_FLOAT64

date / time stamps NX_DATE_TIME or ISO8601: Dates and times are specified using ISO-8601 standard
definitions. Refer to NeXus dates and times (page 40).

strings All strings are to be encoded in UTF-8. Since most strings in a NeXus file are restricted to a small
set of characters and the first 128 characters are standard across encodings, the encoding of most of
the strings in a NeXus file will be a moot point. Where encoding in UTF-8 will be important is when
recording peoples names in NXuser and text notes in NXnotes. Because the few places where
encoding is important also have unpredictable content, as well as the way in which current operating
systems handle character encoding, it is practically impossible to test the encoding used. Hence,
nxvalidate provides no messages relating to character encoding.

binary data Binary data is to be written as UINT8.

images Binary image data is to be written using UINT8, the same as binary data, but with an accompanying
image mime-type. If the data is text, the line terminator is [CR][LF].

NeXus dates and times NeXus dates and times should be stored using the ISO 8601 12 format, e.g.
1996-07-31T21:15:22+0600. The standard also allows for time intervals in fractional seconds with
1 or more digits of precision. This avoids confusion, e.g. between U.S. and European conventions, and is
appropriate for machine sorting.

strftime() format specifiers for ISO-8601 time

%Y-%m-%dT%H:%M:%S%z

Note: Note that the T appears literally in the string, to indicate the beginning of the time element, as speci-
fied in ISO 8601. It is common to use a space in place of the T, such as 1996-07-31 21:15:22+0600.
While human-readable, compatibility with the ISO 8601 standard is not assured with this substitution. The
strftime() format specifier for this is “%Y-%m-%d %H:%M:%S%z”.

12 ISO 8601: http://www.w3.org/TR/NOTE-datetime

40 Chapter 2. NeXus: User Manual

http://www.w3.org/TR/NOTE-datetime
http://www.w3.org/TR/NOTE-datetime

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

NeXus Data Units

Given the plethora of possible applications of NeXus, it is difficult to define units to use. Therefore, the
general rule is that you are free to store data in any unit you find fit. However, any data field must have a
units attribute which describes the units, Wherever possible, SI units are preferred. NeXus units are written
as a string attribute (NX_CHAR) and describe the engineering units. The string should be appropriate for
the value. Values for the NeXus units must be specified in a format compatible with Unidata UDunits 13

Application definitions may specify units to be used for fields using an enumeration.

Linking Multi Dimensional Data with Axis Data

NeXus allows to store multi dimensional arrays of data. In most cases it is not sufficient to just have the
indices into the array as a label for the dimensions of the data. Usually the information which physical
value corresponds to an index into a dimension of the multi dimensional data set. To this purpose a means
is needed to locate appropriate data arrays which describe what each dimension of a multi dimensional data
set actually corresponds too. There is a standard HDF facility to do this: it is called dimension scales.
Unfortunately, at a time, there was only one global namespace for dimension scales. Thus NeXus had to
come up with its own scheme for locating axis data which is described here. A side effect of the NeXus
scheme is that it is possible to have multiple mappings of a given dimension to physical data. For example
a TOF data set can have the TOF dimension as raw TOF or as energy.

There are two methods of linking each data dimension to its respective dimension scale. The preferred
method uses the axes attribute to specify the names of each dimension scale. The original method uses
the axis attribute to identify with an integer the axis whose value is the number of the dimension. After
describing each of these methods, the two methods will be compared. A prerequisite for both methods is
that the data fields describing the axis are stored together with the multi dimensional data set whose axes
need to be defined in the same NeXus group. If this leads to data duplication, use links.

Linking by name using the axes attribute The preferred method is to define an attribute of the data
itself called axes. The axes attribute contains the names of each dimension scale as a colon (or comma)
separated list in the order they appear in C. For example:

Preferred way of denoting axes

1 data:NXdata
2 time_of_flight = 1500.0 1502.0 1504.0 ...
3 polar_angle = 15.0 15.6 16.2 ...
4 some_other_angle = 0.0 0.0 2.0 ...
5 data = 5 7 14 ...
6 @axes = polar_angle:time_of_flight
7 @signal = 1

13 The UDunits specification also includes instructions for derived units. At present, the contents of NeXus units attributes are
not validated in data files.

2.3. NeXus Design 41

http://www.unidata.ucar.edu/software/udunits/udunits-2-units.html

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

Linking by dimension number using the axis attribute The original method is to define an attribute
of each dimension scale called axis. It is an integer whose value is the number of the dimension, in order
of fastest varying dimension. That is, if the array being stored is data with elements data[j][i] in C
and data(i,j) in Fortran, where i is the time-of-flight index and j is the polar angle index, the NXdata
group would contain:

Original way of denoting axes

1 data:NXdata
2 time_of_flight = 1500.0 1502.0 1504.0 ...
3 @axis = 1
4 @primary = 1
5 polar_angle = 15.0 15.6 16.2 ...
6 @axis = 2
7 @primary = 1
8 some_other_angle = 0.0 0.0 2.0 ...
9 @axis = 1

10 data = 5 7 14 ...
11 @signal = 1

The axis attribute must be defined for each dimension scale. The primary attribute is unique to this
method of linking.

There are limited circumstances in which more than one dimension scale for the same data dimension can
be included in the same NXdata group. The most common is when the dimension scales are the three
components of an (hkl) scan. In order to handle this case, we have defined another attribute of type integer
called primary whose value determines the order in which the scale is expected to be chosen for plotting,
i.e.

• 1st choice: primary="1"

• 2nd choice: primary="2"

• etc.

If there is more than one scale with the same value of the axis attribute, one of them must have set
primary="1". Defining the primary attribute for the other scales is optional.

Note: The primary attribute can only be used with the first method of defining dimension
scales discussed above. In addition to the signal data, this group could contain a data set of
the same rank and dimensions called errors containing the standard deviations of the data.

Discussion of the two linking methods In general the method using the axes attribute on the multi
dimensional data set should be preferred. This leaves the actual axis describing data sets unannotated and
allows them to be used as an axis for other multi dimensional data. This is especially a concern as an
axis describing a data set may be linked into another group where it may describe a completely different
dimension of another data set.

42 Chapter 2. NeXus: User Manual

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

Only when alternative axes definitions are needed, the axis method should be used to specify an axis of
a data set. This is shown in the example above for the some_other_angle field where axis="1"
denotes another possible primary axis for plotting. The default axis for plotting carries the primary="1"
attribute.

Both methods of linking data axes will be supported in NeXus utilities that identify dimension scales, such
as NXUfindaxis().

Storing Detectors

There are very different types of detectors out there. Storing their data can be a challenge. As a general
guide line: if the detector has some well defined form, this should be reflected in the data file. A linear
detector becomes a linear array, a rectangular detector becomes an array of size xsize times ysize.
Some detectors are so irregular that this does not work. Then the detector data is stored as a linear array,
with the index being detector number till ndet. Such detectors must be accompanied by further arrays of
length ndet which give azimuthal_angle, polar_angle and distance for each detector.

If data from a time of flight (TOF) instrument must be described, then the TOF dimension becomes the
last dimension, for example an area detector of xsize vs. ysize is stored with TOF as an array with
dimensions xsize, ysize, ntof.

Monitors are Special

Monitors, detectors that measure the properties of the experimental probe rather than the sample, have a
special place in NeXus files. Monitors are crucial to normalize data. To emphasize their role, monitors are
not stored in the NXinstrument hierarchy but on NXentry level in their own groups as there might be
multiple monitors. Of special importance is the monitor in a group called control. This is the main mon-
itor against which the data has to be normalized. This group also contains the counting control information,
i.e. counting mode, times, etc.

Monitor data may be multidimensional. Good examples are scan monitors where a monitor value per scan
point is expected or time-of-flight monitors.

Find the plottable data

Any program whose aim is to identify plottable data should use the following procedure:

1. Open the first top level NeXus group with class NXentry.

2. Open the first NeXus group with class NXdata.

3. Loop through NeXus fields in this group searching for the item with attribute signal="1" indicat-
ing this field has the plottable data.

4. Check to see if this field has an attribute called axes. If so, the attribute value contains a colon
(or comma) delimited list (in the C-order of the data array) with the names of the dimension scales
associated with the plottable data. And then you can skip the next two steps.

2.3. NeXus Design 43

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

5. If the axes attribute is not defined, search for the one-dimensional NeXus fields with attribute
primary="1".

6. These are the dimension scales to label the axes of each dimension of the data.

7. Link each dimension scale to the respective data dimension by the axis attribute (axis="1",
axis="2", ... up to the rank of the data).

8. If necessary, close the NXdata group, open the next one and repeat steps 3 to 6.

9. If necessary, close the NXentry group, open the next one and repeat steps 2 to 7.

Consult the NeXus API (page 17) section, which describes the routines available to program these operations.
In the course of time, generic NeXus browsers will provide this functionality automatically.

Physical File format

This section describes how NeXus structures are mapped to features of the underlying physical file format.
This is a guide for people who wish to create NeXus files without using the NeXus-API.

Choice of HDF as Underlying File Format

At its beginnings, the founders of NeXus identified the Hierarchical Data Format (HDF) as a capable and
efficient multi-platform data storage format. HDF was designed for large data sets and already had a sub-
stantial user community. HDF was developed and maintained initially by the National Center for Supercom-
puting Applications (NCSA) at the University of Illinois at Urbana-Champaign (UIUC) and later spun off
into its own group called The HDF Group (THG), 14 . Rather then developing an own physical file format,
the NeXus group choose to build NeXus on top of HDF.

HDF (now HDF5) is provided with software to read and write data (this is the application-programmer
interface, or API) using a large number of computing systems in common use for neutron and X-ray science.
HDF is a binary data file format that supports compression and structured data.

Mapping NeXus into HDF

NeXus data structures map directly to HDF structures. NeXus groups are HDF4 vgroups or HDF5 groups,
NeXus data sets (or fields) are HDF4 SDS (scientific data sets) or HDF5 datasets. Attributes map directly
to HDF group or dataset attributes.

The only special case is the NeXus class name. HDF4 supports a group class which is set with the
Vsetclass() call and read with VGetclass(). HDF-5 has no group class. Thus the NeXus class
is stored as an attribute to the HDF-5 group with the name NX_class and value of the NeXus class name.

A NeXus link directly maps to the HDF linking mechanisms.

Note: Examples are provided in the Examples of writing and reading NeXus data files (page 93) chap-
ter of Volume II of this manual. These examples include software to write and read NeXus data files

14 The HDF Group: http://www.hdfgroup.org/

44 Chapter 2. NeXus: User Manual

http://www.hdfgroup.org/

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

using the NAPI, as well as other software examples that use native (non-NAPI) libraries. In some cases
the examples show the content of the NeXus data files that are produced. Here are links to some of the
examples: - ex.simple.write - ex.simple.read - native.hdf5.simple.write - native.hdf5.simple.read - Example-
H5py-BasicWriter - Example-H5py-Reader

Perhaps the easiest way to view the implementation of NeXus in HDF5 is to view how the data structures
look. For this, we use the h5dump command-line utility provided with the HDF5 support libraries. Short
examples are provided for the basic NeXus data components:

• h5dump_group: created in C NAPI by:

NXmakegroup (fileID, "entry", "NXentry");

• h5dump_field: created in C NAPI by:

NXmakedata (fileID, "two_theta", NX_FLOAT32, 1, &n);
NXopendata (fileID, "two_theta");

NXputdata (fileID, tth);

• h5dump_attribute: created in C NAPI by:

NXputattr (fileID, "units", "degrees", 7, NX_CHAR);

• h5dump_link –tba–

See the sections NAPI Simple 2-D Write Example (C, F77, F90) (page 93) and NAPI Python Simple 3-D
Write Example (page 96) in the Examples of writing and reading NeXus data files (page 93) chapter of
Volume II for examples that use the native HDF5 calls to write NeXus data files.

h5dump of a NeXus NXentry group

1 GROUP "entry" {
2 ATTRIBUTE "NX_class" {
3 DATATYPE H5T_STRING {
4 STRSIZE 7;
5 STRPAD H5T_STR_NULLPAD;
6 CSET H5T_CSET_ASCII;
7 CTYPE H5T_C_S1;
8 }
9 DATASPACE SCALAR

10 DATA {
11 (0): "NXentry"
12 }
13 }
14 # ... group contents
15 }

2.3. NeXus Design 45

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

h5dump of a NeXus field (HDF5 dataset)

1 DATASET "two_theta" {
2 DATATYPE H5T_IEEE_F64LE
3 DATASPACE SIMPLE { (31) / (31) }
4 DATA {
5 (0): 17.9261, 17.9259, 17.9258, 17.9256, 17.9254, 17.9252,
6 (6): 17.9251, 17.9249, 17.9247, 17.9246, 17.9244, 17.9243,
7 (12): 17.9241, 17.9239, 17.9237, 17.9236, 17.9234, 17.9232,
8 (18): 17.9231, 17.9229, 17.9228, 17.9226, 17.9224, 17.9222,
9 (24): 17.9221, 17.9219, 17.9217, 17.9216, 17.9214, 17.9213,

10 (30): 17.9211
11 }
12 ATTRIBUTE "units" {
13 DATATYPE H5T_STRING {
14 STRSIZE 7;
15 STRPAD H5T_STR_NULLPAD;
16 CSET H5T_CSET_ASCII;
17 CTYPE H5T_C_S1;
18 }
19 DATASPACE SCALAR
20 DATA {
21 (0): "degrees"
22 }
23 }
24 # ... other attributes
25 }

h5dump of a NeXus attribute

1 ATTRIBUTE "axes" {
2 DATATYPE H5T_STRING {
3 STRSIZE 9;
4 STRPAD H5T_STR_NULLPAD;
5 CSET H5T_CSET_ASCII;
6 CTYPE H5T_C_S1;
7 }
8 DATASPACE SCALAR
9 DATA {

10 (0): "two_theta"
11 }
12 }

h5dump of a NeXus link

1 # NeXus links have two parts in HDF5 files.
2

3 # The dataset is created in some group.
4 # A "target" attribute is added to indicate the HDF5 path to this dataset.

46 Chapter 2. NeXus: User Manual

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

5

6 ATTRIBUTE "target" {
7 DATATYPE H5T_STRING {
8 STRSIZE 21;
9 STRPAD H5T_STR_NULLPAD;

10 CSET H5T_CSET_ASCII;
11 CTYPE H5T_C_S1;
12 }
13 DATASPACE SCALAR
14 DATA {
15 (0): "/entry/data/two_theta"
16 }
17 }
18

19 # then, the hard link is created that refers to the original dataset
20 # (Since the name is "two_theta" in this example, it is understood that
21 # this link is created in a different HDF5 group than "/entry/data".)
22

23 DATASET "two_theta" {
24 HARDLINK "/entry/data/two_theta"
25 }

Mapping NeXus into XML

This takes a bit more work than HDF. At the root of NeXus XML file is a XML element with the name
NXroot. Further XML attributes to NXroot define the NeXus file level attributes. An example NeXus
XML data file is provided in the NeXus Introduction (page 7) chapter as Example ex.verysimple.xml

NeXus groups are encoded into XML as elements with the name of the NeXus class and an XML attribute
name which defines the NeXus name of the group. Further group attributes become XML attributes. An
example:

NeXus group element in XML

1 <NXentry name="entry">
2 </NXentry>

NeXus data sets are encoded as XML elements with the name of the data. An attribute NAPItype defines
the type and dimensions of the data. The actual data is stored as PCDATA 15 in the element. Another
example:

NeXus data elements

1 <mode NAPItype="NX_CHAR[7]">
2 monitor
3 </mode>
4 <counts NAPItype="NX_INT32[4]">

15 PCDATA is the XML term for parsed character data (see: http://www.w3schools.com/xml/xml_cdata.asp).

2.3. NeXus Design 47

http://www.w3schools.com/xml/xml_cdata.asp

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

5 21 456 127876 319
6 </counts>

Data are printed in appropriate formats and in C storage order. The codes understood for NAPItype are
all the NeXus data type names. The dimensions are given in square brackets as a comma separated list.
No dimensions need to be given if the data is just a single value. Data attributes are represented as XML
attributes. If the attribute is not a text string, then the attribute is given in the form: type:value, for example:
signal="NX_INT32:1".

NeXus links are stored in XML as XML elements with the name NAPIlink and a XML attribute target
which stores the path to the linked entity in the file. If the item is linked under a different name, then this
name is specified as a XML attribute name to the element NAPIlink.

The authors of the NeXus API worked with the author of the miniXML XML library to create a reasonably
efficient way of handling numeric data with XML. Using the NeXus API handling something like 400
detectors versus 2000 time channels in XML is not a problem. But you may hit limits with XML as the file
format when data becomes to large or you try to process NeXus XML files with general XML tools. General
XML tools are normally ill prepared to process large amounts of numbers.

Special Attributes

NeXus makes use of some special attributes for its internal purposes. These attributes are stored as normal
group or data set attributes in the respective file format. These are:

target This attribute is automatically created when items get linked. The target attribute contains a text
string with the path to the source of the item linked.

napimount The napimount attribute is used to implement external linking in NeXus. The string is a
URL to the file and group in the external file to link too. The system is meant to be extended. But as
of now, the only format supported is:

nxfile://path-to-file#path-infile

This is a NeXus file in the file system at path-to-file and the group path-infile in that NeXus file.

NAPIlink NeXus supports linking items in another group under another name. This is only supported
natively in HDF-5. For HDF-4 and XML a crutch is needed. This crutch is a special class name or
attribute NAPIlink combined with the target attribute. For groups, NAPILink is the group class,
for data items a special attribute with the name NAPIlink.

2.4 Constructing NeXus Files and Application Definitions

In NeXus Design (page 21), we discussed the design of the NeXus format in general terms. In this section
a more tutorial style introduction in how to construct a NeXus file is given. As an example a hypothetical
instrument named WONI will be used.

Note: If you are looking for a tutorial on reading or writing NeXus data files using the NeXus API, consult
the NAPI: NeXus Application Programmer Interface (page 81) chapter of Volume II. For code examples,

48 Chapter 2. NeXus: User Manual

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

refer to Code Examples that use the NAPI (page 93) chapter of Volume II. Alternatively, there are examples
in the native-HDF5-Examples chapter of writing and reading NeXus data files using the native HDF5 inter-
faces in C. Further, there are also some Python examples using the h5py package in the Python Examples
using h5py (page 105) section.

2.4.1 The WOnderful New Instrument (WONI)

Consider yourself to be responsible for some hypothetical WOnderful New Instrument (WONI). You are
tasked to ensure that WONI will record data according to the NeXus standard. For the sake of simplicity,
WONI bears a strong resemblance to a simple powder diffractometer, but let’s pretend that WONI cannot
use any of the existing NXDL application definitions.

Figure 2.6: The (fictional) WONI example powder diffractometer

2.4. Constructing NeXus Files and Application Definitions 49

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

WONI uses collimators and a monochromator to illuminate the sample with neutrons of a selected wave-
length as described in The (fictional) WONI example powder diffractometer (page 49). The diffracted beam
is collected in a large, banana-shaped, position sensitive detector. Typical data looks like Example Powder
Diffraction Plot from (fictional) WONI at HYNES (page 50). There is a generous background to the data
plus quite a number of diffraction peaks.

Figure 2.7: Example Powder Diffraction Plot from (fictional) WONI at HYNES

2.4.2 Constructing a NeXus file for WONI

The starting point for a NeXus file for WONI will be an empty basic NeXus file hierarchy as documented in
figure FigShell. In order to arrive at a full neXus file the following steps are required:

1. For each instrument component, decide which parameters need to be stored

2. Map the component parameters to NeXus groups and parameters and add the components to the
NXinstrument hierarchy

3. Decide what needs to go into NXdata

50 Chapter 2. NeXus: User Manual

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

4. Fill the NXsample and NXmonitor groups

Basic structure of a NeXus file

1 entry:NXentry
2 NXdata
3 NXinstrument
4 NXmonitor
5 NXsample

Decide which parameters need to be stored

Now the various groups of this empty NeXus file shell need to be filled. The next step is to look at a design
drawing of WONI. Identify all the instrument components like collimators, detectors, monochromators etc.
For each component decide which values need to be stored. As NeXus aims to describe the experiment as
good as possible, strive to capture as much information as practical.

Mapping parameters to NeXus

With the list of parameters to store for each component, consult the reference manual section on the NeXus
base classes. You will find that for each of your instruments components there will be a suitable NeXus base
class. Add this base class together with a name as a group under NXinstrument in your NeXus file hierarchy.
Then consult the possible parameter names in the NeXus base class and match them with the parameters
you wish to store for your instruments components.

As an example, consider the monochromator. You may wish to store: the wavelength, the d-value of the
reflection used, the type of the monochromator and its angle towards the incoming beam. The reference
manual tells you that NXcrystal is the right base class to use. Suitable fields for your parameters can be
found in there to. After adding them to the basic NeXus file the file looks like in figure FigShellMono

Basic structure of a NeXus file with a monochromator added

1 entry:NXentry
2 NXdata
3 NXinstrument
4 monochromator:Nxcrystal
5 wavelength
6 d_spacing
7 rotation_angle
8 reflection
9 type

10 NXmonitor
11 NXsample

If a parameter or even a whole group is missing in order to describe your experiment, do not despair! Contact
the NIAC and suggest to add the group or parameter. Give a little documentation what it is for. The NIAC

2.4. Constructing NeXus Files and Application Definitions 51

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

will check that your suggestion is no duplicate and sufficiently documented and will then proceed to enhance
the base classes with your suggestion.

A more elaborate example of the mapping process is given in the section Creating a NXDL Specification
(page 52).

Decide on NXdata

The NXdata/ group is supposed to contain the data required to put up a quick plot. For WONI this is a plot
of counts versus two theta (polar_angle in NeXus) as can be seen in Example Powder Diffraction Plot from
(fictional) WONI at HYNES (page 50). Now, in NXdata, create links to the appropriate data items in the
NXinstrument hierarchy. In the case of WONI, both parameters live in the detector:NXdetector
group.

Fill in auxiliary Information

Look at the section on NXsample in the NeXus reference manual. Choose appropriate parameters to store
for your samples. Probably at least the name will be needed.

In order to normalize various experimental runs against each other it is necessary to know about the counting
conditions and especially the monitor counts of the monitor used for normalization. The NeXus convention
is to store such information in a control:NXmonitor group at NXentry level. Consult the reference
for NXmonitor for field names. If additional monitors exist within your experiment, they will be stored as
additional NXmonitor groups at entry level.

Consult the documentation for NXentry in order to find out under which names to store information such
as titles, user names, experiment times etc.

A more elaborate example of this process can be found in the following section on creating an application
definition.

2.4.3 Creating a NXDL Specification

An NXDL specification for a NeXus file is required if you desire to standardize NeXus files from various
sources. Another name for a NXDL description is application definition. A NXDL specification can be used
to verify NeXus files to conform to the standard encapsulated in the application definition. The process for
constructing a NXDL specification is similar to the one described above for the construction of NeXus files.

One easy way to describe how to store data in the NeXus class structure and to create a NXDL specification
is to work through an example. Along the way, we will describe some key decisions that influence our
particular choices of metadata selection and data organization. So, on with the example ...

Application Definition Steps

With all this introductory stuff out of the way, let us look at the process required to define an application
definition:

1. Think! hard about what has to go into the data file.

52 Chapter 2. NeXus: User Manual

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

2. Map the required fields into the NeXus hierarchy

3. Describe this map in a NXDL file

4. Standardize your definition through communication with the NIAC

Step 1: Think! hard about data

This is actually the hard bit. There are two things to consider:

1. What has to go into the data file?

2. What is the normal plot for this type of data?

For the first part, one of the NeXus guiding principles gives us - Guidance! “A NeXus file must contain all
the data necessary for standard data analysis.”

Not more and not less for an application definition. Of course the definition of standard data for analysis or
a standard plot depends on the science and the type of data being described. Consult senior scientists in the
field about this is if you are unsure. Perhaps you must call an international meeting with domain experts to
haggle that out. When considering this, people tend to put in everything which might come up. This is not
the way to go.

A key test question is: Is this data item necessary for common data analysis? Only these necessary data
items belong in an application definition.

The purpose of an application definition is that an author of upstream software who consumes the file can
expect certain data items to be there at well defined places. On the other hand if there is a development in
your field which analyzes data in a novel way and requires more data to do it, then it is better to err towards
the side of more data.

Now for the case of WONI, the standard data analysis is either Rietveld refinement or profile analysis. For
both purposes, the kind of radiation used to probe the sample (for WONI, neutrons), the wavelength of the
radiation, the monitor (which tells us how long we counted) used to normalize the data, the counts and the
two theta angle of each detector element are all required. Usually, it is desirable to know what is being
analyzed, so some metadata would be nice: a title, the sample name and the sample temperature. The
data typically being plotted is two theta against counts, as shown in Example Powder Diffraction Plot from
(fictional) WONI at HYNES (page 50) above. Summarizing, the basic information required from WONI is
given next.

• title of measurement

• sample name

• sample temperature

• counts from the incident beam monitor

• type of radiation probe

• wavelength (λ) of radiation incident on sample

• angle (2θ or two theta) of detector elements

• counts for each detector element

2.4. Constructing NeXus Files and Application Definitions 53

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

If you start to worry that this is too little information, hold on, the section on Using an Application Definition
(Using an Application Definition (page 60)) will reveal the secret how to go from an application definition
to a practical file.

Step 2: Map Data into the NeXus Hierarchy

This step is actually easier then the first one. We need to map the data items which were collected in Step
1 into the NeXus hierarchy. A NeXus file hierarchy starts with an NXentry group. At this stage it is
advisable to pull up the base class definition for NXentry and study it. The first thing you might notice is
that NXentry contains a field named title. Reading the documentation, you quickly realize that this is
a good place to store our title. So the first mapping has been found.

title = /NXentry/title

Note: In this example, the mapping descriptions just contain the path strings into the NeXus file hierarchy
with the class names of the groups to use. As it turns out, this is the syntax used in NXDL link specifications.
How convenient!

Another thing to notice in the NXentry base class is the existence of a group of class NXsample. This
looks like a great place to store information about the sample. Studying the NXsample base class confirms
this view and there are two new mappings:

1 sample name = /NXentry/NXsample/name
2 sample temperature = /NXentry/NXsample/temperature

Scanning the NXentry base class further reveals there can be a NXmonitor group at this level. Looking
up the base class for NXmonitor reveals that this is the place to store our monitor information.

monitor = /NXentry/NXmonitor/data

For the other data items, there seem to be no solutions in NXentry. But each of these data items describe
the instrument in more detail. NeXus stores instrument descriptions in the /NXentry/NXinstrument
branch of the hierarchy. Thus, we continue by looking at the definition of the NXinstrument base
class. In there we find further groups for all possible instrument components. Looking at the schematic
of WONI (The (fictional) WONI example powder diffractometer (page 49)), we realize that there is a source,
a monochromator and a detector. Suitable groups can be found for these components in NXinstrument
and further inspection of the appropriate base classes reveals the following further mappings:

1 probe = /NXentry/NXinstrument/NXsource/probe
2 wavelength = /NXentry/NXinstrument/NXcrystal/wavelength
3 two theta of detector elements = /NXentry/NXinstrument/NXdetector/polar angle
4 counts for each detector element = /NXentry/NXinstrument/NXdetector/data

Thus we mapped all our data items into the NeXus hierarchy! What still needs to be done is to decide upon
the content of the NXdata group in NXentry. This group describes the data necessary to make a quick
plot of the data. For WONI this is counts versus two theta. Thus we add this mapping:

1 two theta of detector elements = /NXentry/NXdata/polar angle
2 counts for each detector element = /NXentry/NXdata/data

54 Chapter 2. NeXus: User Manual

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

The full mapping of WONI data into NeXus is documented in TableWoniFullMapping.

WONI data NeXus path
title of measurement /NXentry/title
sample name /NXentry/NXsample/name
sample temperature /NXentry/NXsample/temperature
monitor /NXentry/NXmonitor/data
type of radiation probe /NXentry/MXinstrument/NXsource/probe
wavelength of radiation incident on
sample

/NXentry/MXinstrument/NXcrystal/wavelength

two theta of detector elements /NXentry/NXinstrument/NXdetector/polar_angle
counts for each detector element /NXentry/NXinstrument/NXdetector/data
two theta of detector elements /NXentry/NXdata/polar_angle
counts for each detector element /NXentry/NXdata/data

Looking at this table, one might get concerned that the two theta and counts data is stored in two places and
thus duplicated. Stop worrying, this problem is solved at the NeXus API level. Typically NXdata will only
hold links to the corresponding data items in /NXentry/NXinstrument/NXdetector.

In this step problems might occur. The first is that the base class definitions contain a bewildering number
of parameters. This is on purpose: the base classes serve as dictionaries which define names for everything
which possibly can occur. You do not have to give all that information. The key question is, as already said,
What is required for typical data analysis for this type of application? You might also be unsure how to
correctly store a particular data item. In such a case, contact the NIAC for help. Another problem which can
occur is that you require to store information for which there is no name in one of the existing base classes
or you have a new instrument component for which there is no base class alltogether. In such a case, please
feel free to contact the NIAC with a suggestion for an extension of the base classes in question.

Step 3: Describe this map in a NXDL file

This is even easier. Some XML editing is necessary. Fire up your XML editor of choice and open a file.
If your XML editor supports XML schema while editing XML, it is worth to load nxdl.xsd. Now your
XML editor can help you to create a proper NXDL file. As always, the start is an empty template file. This
looks like ExNxdlTemplate. This is just the basic XML for a NXDL definition. It is advisable to change
some of the documentation strings.

NXDL template file

1 <?xml version="1.0" encoding="UTF-8"?>
2 <!--
3 # NeXus - Neutron and X-ray Common Data Format
4 #
5 # Copyright (C) 2008-2012 NeXus International Advisory Committee (NIAC)
6 #
7 # This library is free software; you can redistribute it and/or
8 # modify it under the terms of the GNU Lesser General Public
9 # License as published by the Free Software Foundation; either

10 # version 3 of the License, or (at your option) any later version.

2.4. Constructing NeXus Files and Application Definitions 55

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

11 #
12 # This library is distributed in the hope that it will be useful,
13 # but WITHOUT ANY WARRANTY; without even the implied warranty of
14 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 # Lesser General Public License for more details.
16 #
17 # You should have received a copy of the GNU Lesser General Public
18 # License along with this library; if not, write to the Free Software
19 # Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 #
21 # For further information, see http://www.nexusformat.org
22

23 ########### SVN repository information ###################
24 # $Date: 2012-05-28 23:10:09 +0200 (Mo, 28. Mai 2012) $
25 # $Author: Pete Jemian $
26 # $Revision: 1091 $
27 # $HeadURL: https://svn.nexusformat.org/definitions/branches/docbook2sphinx/manual/source/examples/NX__template__.nxdl.xml $
28 # $Id: NX__template__.nxdl.xml 1091 2012-05-28 21:10:09Z Pete Jemian $
29 ########### SVN repository information ###################
30 -->
31 <definition name="NX__template__" extends="NXobject" type="group"
32 category="application"
33 xmlns="http://definition.nexusformat.org/nxdl/3.1"
34 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
35 xsi:schemaLocation="http://definition.nexusformat.org/nxdl/3.1 ../nxdl.xsd"
36 version="1.0b"
37 >
38 <doc>template for a NXDL application definition</doc>
39 </definition>

For example, copy and rename the file to NXwoni.nxdl.xml. Then, locate the XML root el-
ement definition and change the name attribute (the XML shorthand for this attribute is
/definition/@name) to NXwoni. Change the doc as well. Also consider keeping track of
/definition/@version as suits your development of this NXDL file.

The next thing which needs to be done is adding groups into the definition. A group is defined by some
XML, as in this example:

1 <group type="NXdata">
2

3 </group>

The type is the actual NeXus base class this group belongs to. Optionally a name attribute may be given
(default is data).

Next, one needs to include data items too. The XML for such a data item looks similar to this:

<field name="polar_angle" type="NX_FLOAT units="NX_ANGLE">
<doc>Link to polar angle in /NXentry/NXinstrument/NXdetector</doc>
<dimensions rank="1">

<dim index="1" value="ndet"/>
</dimensions>

</field>

56 Chapter 2. NeXus: User Manual

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

The meaning of the name attribute is intuitive, the type can be looked up in the relevant base class defi-
nition. A field definition can optionally contain a doc element which contains a description of the data
item. The dimensions entry specifies the dimensions of the data set. The size attribute in the dimen-
sions tag sets the rank of the data, in this example: rank="1". In the dimensions group there must
be rank dim fields. Each dim tag holds two attributes: index determines to which dimension this tag
belongs, the 1 means the first dimension. The value attribute then describes the size of the dimension.
These can be plain integers, variables, such as in the example ndet or even expressions like tof+1.

Thus a NXDL file can be constructed. The full NXDL file for the WONI example is given in Full listing of
the WONI Application Definition (page 57). Clever readers may have noticed the strong similarity between
our working example NXwoni and NXmonopd since they are essentially identical. Give yourselves a cookie
if you spotted this.

Step 4: Standardize with the NIAC

Basically you are done. Your first application definition for NeXus is constructed. In order to make your
work a standard for that particular application type, some more steps are required:

• Send your application definition to the NIAC for review

• Correct your definition per the comments of the NIAC

• Cure and use the definition for a year

• After a final review, it becomes the standard

The NIAC must review an application definition before it is accepted as a standard. The one year curation
period is in place in order to gain practical experience with the definition and to sort out bugs from Step 1.
In this period, data shall be written and analyzed using the new application definition.

Full listing of the WONI Application Definition

1 <?xml version="1.0" encoding="UTF-8"?>
2 <?xml-stylesheet type="text/xsl" href="nxdlformat.xsl" ?>
3 <!--
4 # NeXus - Neutron and X-ray Common Data Format
5 #
6 # Copyright (C) 2008-2012 NeXus International Advisory Committee (NIAC)
7 #
8 # This library is free software; you can redistribute it and/or
9 # modify it under the terms of the GNU Lesser General Public

10 # License as published by the Free Software Foundation; either
11 # version 3 of the License, or (at your option) any later version.
12 #
13 # This library is distributed in the hope that it will be useful,
14 # but WITHOUT ANY WARRANTY; without even the implied warranty of
15 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 # Lesser General Public License for more details.
17 #
18 # You should have received a copy of the GNU Lesser General Public
19 # License along with this library; if not, write to the Free Software

2.4. Constructing NeXus Files and Application Definitions 57

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

20 # Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 #
22 # For further information, see http://www.nexusformat.org
23

24 ########### SVN repository information ###################
25 # $Date: 2012-03-06 16:00:33 +0100 (Di, 06. Mär 2012) $
26 # $Author: Pete Jemian $
27 # $Revision: 1060 $
28 # $HeadURL: https://svn.nexusformat.org/definitions/branches/docbook2sphinx/applications/NXmonopd.nxdl.xml $
29 # $Id: NXmonopd.nxdl.xml 1060 2012-03-06 15:00:33Z Pete Jemian $
30 ########### SVN repository information ###################
31 -->
32 <definition name="NXmonopd" extends="NXobject" type="group"
33 category="application"
34 xmlns="http://definition.nexusformat.org/nxdl/@NXDL_RELEASE@"
35 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
36 xsi:schemaLocation="http://definition.nexusformat.org/nxdl/@NXDL_RELEASE@ ../nxdl.xsd"
37 version="1.0b"
38 svnid="$Id: NXmonopd.nxdl.xml 1060 2012-03-06 15:00:33Z Pete Jemian $">
39 <doc> Monochromatic Neutron and X-Ray Powder Diffraction. Instrument definition for a powder
40 diffractometer at a monochromatic neutron or X-ray beam. This is both suited for a powder
41 diffractometer with a single detector or a powder diffractometer with a position sensitive
42 detector. </doc>
43 <group type="NXentry" name="entry">
44 <field name="title"/>
45 <field name="start_time" type="NX_DATE_TIME"/>
46 <field name="definition">
47 <doc> Official NeXus NXDL schema to which this file conforms </doc>
48 <enumeration>
49 <item value="NXmonopd"/>
50 </enumeration>
51 </field>
52 <group type="NXinstrument">
53 <group type="NXsource">
54 <field name="type"/>
55 <field name="name"/>
56 <field name="probe">
57 <enumeration>
58 <item value="neutron"/>
59 <item value="x-ray"/>
60 <item value="electron"/>
61 </enumeration>
62 </field>
63 </group>
64 <group type="NXcrystal">
65 <field name="wavelength" type="NX_FLOAT" units="NX_WAVELENGTH">
66 <doc>Optimum diffracted wavelength</doc>
67 <dimensions rank="1">
68 <dim index="1" value="i"/>
69 </dimensions>
70 </field>
71 </group>
72 <group type="NXdetector">

58 Chapter 2. NeXus: User Manual

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

73 <field name="polar_angle" type="NX_FLOAT" axis="1">
74 <doc>where ndet = number of detectors</doc>
75 <dimensions rank="1">
76 <dim index="1" value="ndet" />
77 </dimensions>
78 </field>
79 <field name="data" type="NX_INT" signal="1">
80 <doc>
81 detector signal (usually counts) are already
82 corrected for detector efficiency
83 </doc>
84 <dimensions rank="1">
85 <dim index="1" value="ndet" />
86 </dimensions>
87 </field>
88 </group>
89 </group>
90 <group type="NXsample">
91 <field name="name">
92 <doc>Descriptive name of sample</doc>
93 </field>
94 <field name="rotation_angle" type="NX_FLOAT" units="NX_ANGLE">
95 <doc> Optional rotation angle for the case when the powder diagram has been obtained
96 through an omega-2theta scan like from a traditional single detector powder
97 diffractometer </doc>
98 </field>
99 </group>

100 <group type="NXmonitor">
101 <field name="mode">
102 <doc>Count to a preset value based on either clock time (timer) or received monitor
103 counts (monitor).</doc>
104 <enumeration>
105 <item value="monitor"/>
106 <item value="timer"/>
107 </enumeration>
108 </field>
109 <field name="preset" type="NX_FLOAT">
110 <doc>preset value for time or monitor</doc>
111 </field>
112 <field name="integral" type="NX_FLOAT" units="NX_ANY">
113 <doc>Total integral monitor counts</doc>
114 </field>
115 </group>
116 <group type="NXdata">
117 <link name="polar_angle" target="/NXentry/NXinstrument/NXdetector/polar_angle">
118 <doc>Link to polar angle in /NXentry/NXinstrument/NXdetector</doc>
119 </link>
120 <link name="data" target="/NXentry/NXinstrument/NXdetector/data">
121 <doc>Link to data in /NXentry/NXinstrument/NXdetector</doc>
122 </link>
123 </group>
124 </group>
125 </definition>

2.4. Constructing NeXus Files and Application Definitions 59

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

Using an Application Definition

The application definition is like an interface for your data file. In practice files will contain far more
information. For this, the extendable capability of NeXus comes in handy. More data can be added, and up-
stream software relying on the interface defined by the application definition can still retrieve the necessary
information without any changes to their code.

NeXus application definitions only standardize classes. You are free to decide upon names of groups, subject
to them matching regular expression for NeXus name attributes (see the regular expression pattern for NXDL
group and field names in RegExpName). Note the length limit of 63 characters imposed by HDF5. Please
use sensible, descriptive names and separate multi worded names with underscores.

Something most people wish to add is more metadata, for example in order to index files into a database
of some sort. Go ahead, do so, if applicable, scan the NeXus base classes for standardized names. For
metadata, consider to use the NXarchive definition. In this context, it is worth to mention that a practical
NeXus file might adhere to more then one application definition. For example, WONI data files may adhere
to both the NXmonopd and NXarchive definitions. The first for data analysis, the second for indexing
into the database.

Often, instrument scientists want to store the complete state of their instrument in data files in order to be
able to find out what went wrong if the data is unsatisfactory. Go ahead, do so, please use names from the
NeXus base classes.

Site policy might require you to store the names of all your bosses up to the current head of state in data
files. Go ahead, add as many NXuser classes as required to store that information. Knock yourselves silly
over this.

Your Scientific Accounting Department (SAD) may ask of you the preposterous; to store billing information
into data files. Go ahead, do so if your judgment allows. Just do not expect the NIAC to provide base classes
for this and do not use the prefix NX for your classes.

In most cases, NeXus files will just have one NXentry class group. But it may be required to store multiple
related data sets of the results of data analysis into the same data file. In this case create more entries. Each
entry should be interpretable standalone, i.e. contain all the information of a complete NXentry class.
Please keep in mind that groups or data items which stay constant across entries can always be linked in.

2.4.4 Processed Data

Data reduction and analysis programs are encouraged to store their results in NeXus data files. As far as the
necessary, the normal NeXus hierarchy is to be implemented. In addition, processed data files must contain
a NXprocess group. This group, that documents and preserves data provenance, contains the name of the
data processing program and the parameters used to run this program in order to achieve the results stored
in this entry. Multiple processing steps must have a separate entry each.

2.5 Strategies for storing information in NeXus data files

NeXus may appear daunting, at first, to use. The number of base classes is quite large as well as is the number
of application definitions. This chapter describes some of the strategies that have been recommended for
how to store information in NeXus data files.

60 Chapter 2. NeXus: User Manual

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

When we use the term storing, some might be helped if they consider this as descriptions for how to classify
their data.

It is intended for this chapter to grow, with the addition of different use cases as they are presented for
suggestions.

2.5.1 Strategies: The simplest case(s)

Perhaps the simplest case might be either a step scan with two or more columns of data. Another simple
case might be a single image acquired by an area detector. In either of these hypothetical cases, the situation
is so simple that there is little addition information available to be described (for whatever reason).

Step scan with two or more data columns

Consider the case where we wish to store the data from a step scan. This case may involve two or more
related 1-D arrays of data to be saved, each having the same length. For our hypothetical case, we’lll have
these positioners as arrays:

positioner arrays detector arrays
ar, ay, dy I0, I00, time, Epoch, photodiode

2.6 Brief history of the NeXus format

Two things to note about the development and history of NeXus:

• All efforts on NeXus have been voluntary except for one year when we had one full-time worker.

• The NIAC has already discussed many matters related to the format.

June 1994 Mark Könnecke (then ISIS, now PSI) made a proposal using netCDF 16 for the
European neutron scattering community while working at ISIS

August 1994 Jonathan Tischler (ORNL) proposed an HDF-based format 17 as a standard for
data storage at APS

October 1994 Ray Osborn convened a series of three workshops called SoftNeSS. 18 In the
first meeting, Mark Könnecke and Jon Tischler were invited to meet with representatives
from all the major U.S. neutron scattering laboratories at Argonne National Laboratory
to discuss future software development for the analysis and visualization of neutron data.
One of the main recommendations of SoftNeSS‘94 was that a common data format should
be developed.

September 1995 At SoftNeSS 1995 (at NIST), three individual data format proposals by Prze-
mek Klosowski (NIST), Mark Könnecke (then ISIS), and Jonathan Tischler (ORNL and
APS/ANL) were joined to form the basis of the current NeXus format. At this workshop,
the name NeXus was chosen.

16 http://wiki.nexusformat.org/images/b/b8/European-Formats.pdf
17 http://www.neutron.anl.gov/softness
18 http://wiki.nexusformat.org/images/d/d5/Proposed_Data_Standard_for_the_APS.pdf

2.6. Brief history of the NeXus format 61

http://wiki.nexusformat.org/images/b/b8/European-Formats.pdf
http://www.neutron.anl.gov/softness
http://wiki.nexusformat.org/images/d/d5/Proposed_Data_Standard_for_the_APS.pdf

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

August 1996 The HDF-4 API is quite complex. Thus a NeXus Abstract Programmer Interface
(NAPI) EDIT_ME was released which simplified reading and writing NeXus files.

October 1996 At SoftNeSS 1996 (at ANL), after reviewing the different scientific data formats
discussed, it was decided to use HDF-4 as it provided the best grouping support. The basic
structure of a NeXus file was agreed upon. the various data format proposals were com-
bined into a single document by Przemek Klosowski (NIST), Mark Könnecke (then ISIS),
Jonathan Tischler (ORNL and APS/ANL), and Ray Osborn (IPNS/ANL) coauthored the
first proposal for the NeXus scientific data standard. 19

July 1997 SINQ at PSI started writing NeXus files to store raw data.

Summer 2001 MLNSC at LANL started writing NeXus files to store raw data

September 2002 NeXus API version 2.0.0 is released. This version brought support for the
new version of HDF, HDF-5, released by the HDF group. HDF-4 imposed limits on file
sizes and the number of objects in a file. These issues were resolved with HDF-5. The
NeXus API abstracted the difference between the two physical file formats away form the
user.

June 2003 Przemek Klosowski, Ray Osborn, and Richard Riedel received the only known
grant explicitly for working on NeXus from the Systems Integration for Manufactur-
ing Applications (SIMA) program of the National Institute of Standards and Technology
(NIST). The grant funded a person for one year to work on community wide infrastructure
in NeXus.

October 2003 In 2003, NeXus had arrived at a stage where informal gatherings of a group of
people were no longer good enough to oversee the development of NeXus. This lead to
the formation of the NeXus International Advisory Committee (NIAC) which strives to
include representatives of all major stake holders in NeXus. A first meeting was held at
CalTech. Since 2003, the NIAC meets every year to discuss all matters NeXus.

July 2005 The community asked the NeXus team to provide an ASCII based physical file
format which allows them to edit their scientific results in emacs. This lead to the devel-
opment of a XML NeXus physical format. This was released with NeXus API version
3.0.0.

May 2007 NeXus API version 4.0.0 is released with broader support for scripting languages
and the feature to link with external files.

October 2007 NeXus API version 4.1.0 is released with many bug-fixes.

October 2008 NXDL is defined. Until now, NeXus used another XML format, meta-DTD, for
defining base classes and application definitions. There were several problems with meta-
DTD, the biggest one being that it was not easy to validate against it. NXDL was designed
to circumvent these problems. All current base classes and application definitions were
ported into the NXDL.

April 2009 NeXus API version 4.2.0 is released with additional C++, IDL, and python/numpy
interfaces.

September 2009 NXDL and draft NXsas presented to canSAS at SAS2009 conference
19 http://wiki.nexusformat.org/images/9/9a/NeXus_Proposal.pdf

62 Chapter 2. NeXus: User Manual

http://wiki.nexusformat.org/images/9/9a/NeXus_Proposal.pdf

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

January 2010 NXDL presented to ESRF HDF5 workshop on hyperspectral data

2.7 NeXus Community

NeXus began as a group of scientists with the goal of defining a common data storage format to exchange
experimental results and to exchange ideas about how to analyze them.

The NeXus Scientific Community provides the scientific data, advice, and continued involvement with the
NeXus standard. NeXus provides a forum for the scientific community to exchange ideas in data storage
through the NeXus wiki.

The NeXus International Advisory Committee (NIAC) supervises the development and maintenance of
the NeXus common data format for neutron, X-ray, and muon science. The NIAC supervises a technical
committee to oversee the NeXus Application Programmer Interface (NAPI) and the NeXus class definitions.

There are several mechanisms in place in order to coordinate the development of NeXus with the larger
community.

2.7.1 NIAC: The NeXus International Advisory Committee

The purpose of the NeXus International Advisory Committee (NIAC) 20 is to supervise the development
and maintenance of the NeXus common data format for neutron, X-ray, and muon science. This purpose
includes, but is not limited to, the following activities.

1. To establish policies concerning the definition, use, and promotion of the NeXus format.

2. To ensure that the specification of the NeXus format is sufficiently complete and clear for its use in
the exchange and archival of neutron, X-ray, and muon data.

3. To receive and examine all proposed amendments and extensions to the NeXus format. In particular, to
ratify proposed instrument and group class definitions, to ensure that the data structures conform to the
basic NeXus specification, and to ensure that the definitions of data items are clear and unambiguous
and conform to accepted scientific usage.

4. To ensure that documentation of the NeXus format is sufficient, current, and available to potential
users both on the internet and in other forms.

5. To coordinate with the developers of the NeXus Application Programming Interface to ensure that it
supports the use of the NeXus format in the neutron, X-ray, and muon communities, and to promote
other software development that will benefit users of the NeXus format.

6. To coordinate with other organizations that maintain and develop related data formats to ensure max-
imum compatibility.

The committee will meet at least once every other calendar year according to the following plan:
20 For more details about the NIAC constitution, procedures, and meetings, refer to the NIAC wiki page:

http://wiki.nexusformat.org/NIAC The members of the NIAC may be reached by email: NIAC

2.7. NeXus Community 63

http://wiki.nexusformat.org/NIAC

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

• In years coinciding with the NOBUGS series of conferences (once every two years), members of
the entire NIAC will meet as a satellite meeting to NOBUGS, along with interested members of the
community.

• In intervening years, the executive officers of the NIAC will attend, along with interested members of
the NIAC. This is intended to be a working meeting with a small group.

Footnote

2.7.2 NeXus Mailing Lists

There are several mailing lists associated with NeXus.

NeXus Mailing List We invite anyone who is associated with neutron and/or X-ray syn-
chrotron scattering and who wishes to be involved in the development and testing of the
NeXus format to subscribe to this list. It is for the free discussion of all aspects of the
design and operation of the NeXus format.

• List Address: nexus@nexusformat.org

• Subscriptions: http://lists.nexusformat.org/mailman/listinfo/nexus

• Archive: http://lists.nexusformat.org/pipermail/nexus

NeXus International Advisory Committee (NIAC) Mailing List This list contains discus-
sions of the NeXus International Advisory Committee (NIAC) (page 63), EDIT_ME which
oversees the development of the NeXus data format. Its members represent many of the
major neutron and synchrotron scattering sources in the world. Membership and posting
to this list are confined to the committee members, but the archives are public.

• List Address: nexus-committee@nexusformat.org

• Subscriptions: http://lists.nexusformat.org/mailman/listinfo/nexus-committee

• Archive: http://lists.nexusformat.org/pipermail/nexus-committee

NeXus Developers Mailing List This mailing list is for discussions concerning the technical
development of NeXus (the Definitions, NXDL, and the NeXus Application Program In-
terface).

• List Address: nexus-developers@nexusformat.org

• Subscriptions: http://lists.nexusformat.org/mailman/listinfo/nexus-developers

• Archive: http://lists.nexusformat.org/pipermail/nexus-developers

Subversion (http://subversion.apache.org) is the revision control system used by the
NeXus developers.

TRAC (http://trac.edgewall.org) is the issue tracking and bug reporting system used by
the NeXus developers.

NeXus Code Subversion Mailing List Members of this list will receive an email whenever
a commit is made to the NeXus code repository (page 65). This list cannot be posted

64 Chapter 2. NeXus: User Manual

http://lists.nexusformat.org/mailman/listinfo/nexus
http://lists.nexusformat.org/pipermail/nexus
http://lists.nexusformat.org/mailman/listinfo/nexus-committee
http://lists.nexusformat.org/pipermail/nexus-committee
http://lists.nexusformat.org/mailman/listinfo/nexus-developers
http://lists.nexusformat.org/pipermail/nexus-developers
http://subversion.apache.org
http://trac.edgewall.org

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

to - all questions should instead be sent to the NeXus Developers Mailing List (nexus-
developers@nexusformat.org).

• List Address: nexus-code-svn@nexusformat.org

• Subscriptions: http://lists.nexusformat.org/mailman/listinfo/nexus-code-svn

• Archive: http://lists.nexusformat.org/pipermail/nexus-code-svn

NeXus Code Tickets Mailing List Members of this list will receive an email whenever a
ticket (bug/issue/task) associated with NeXus code library development is modified on
the Nexus code TRAC server. The list of ticket updates and subversion changesets is
available on the code repository TRAC timeline. This list cannot be posted to - see the
section on Issue Reporting (page 68).

• List Address: nexus-code-tickets@nexusformat.org

• Subscriptions: http://lists.nexusformat.org/mailman/listinfo/nexus-code-tickets

• Archive: http://lists.nexusformat.org/pipermail/nexus-code-tickets

• TRAC Timeline: http://trac.nexusformat.org/code/report/1

NeXus Definitions Subversion Mailing List Members of this list will receive an email when-
ever a commit is made to the NeXus definitions repository (page 65). This list cannot
be posted to - all questions should instead be sent to the NeXus Developers Mailing List
(nexus-developers@nexusformat.org).

• List Address: nexus-definitions-svn@nexusformat.org

• Subscriptions: http://lists.nexusformat.org/mailman/listinfo/nexus-definitions-svn

• Archive: http://lists.nexusformat.org/pipermail/nexus-definitions-svn

NeXus Definitions Tickets Mailing List Members of this list will receive an email whenever
a ticket (bug/issue/task) associated with NeXus definitions development is modified on
the Nexus definitions TRAC server. The list of ticket updates and subversion changesets
is available on the definitions repository TRAC timeline. This list cannot be posted to -
see the section on Issue Reporting (page 68).

• List Address: nexus-definitions-tickets@nexusformat.org

• Subscriptions: http://lists.nexusformat.org/mailman/listinfo/nexus-definitions-tickets

• Archive: http://lists.nexusformat.org/pipermail/nexus-definitions-tickets

• TRAC Timeline: http://trac.nexusformat.org/definitions/report/1

2.7.3 NeXus Subversion Repositories

NeXus NXDL class definitions (both base classes and instruments) and the NeXus code library source are
held in a subversion repository. The repository is world readable and though you can browse the NeXus code
library and applications or NeXus NXDL class definitions repositories directly, a better looking interface is
provided by the ViewVC or TRAC browsers.

• Browse the NeXus code (library and applications) repository using ViewVC or TRAC

2.7. NeXus Community 65

http://lists.nexusformat.org/mailman/listinfo/nexus-code-svn
http://lists.nexusformat.org/pipermail/nexus-code-svn
http://lists.nexusformat.org/mailman/listinfo/nexus-code-tickets
http://lists.nexusformat.org/pipermail/nexus-code-tickets
http://trac.nexusformat.org/code/report/1
http://lists.nexusformat.org/mailman/listinfo/nexus-definitions-svn
http://lists.nexusformat.org/pipermail/nexus-definitions-svn
http://lists.nexusformat.org/mailman/listinfo/nexus-definitions-tickets
http://lists.nexusformat.org/pipermail/nexus-definitions-tickets
http://trac.nexusformat.org/definitions/report/1

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

• Browse NeXus definitions (NXDL classes) repository using ViewVC or TRAC

The repository can alse be interrogated for recent updates via a query form, such as:

http://svn.nexusformat.org/viewvc/NeXusCode/trunk/?view=queryform

For example, show me all changes in the last month for the code (library and applications) repository

http://svn.nexusformat.org/viewvc/NeXusCode/trunk/?view=query&date=month&limit_changes=100

or Definition repository

http://trac.nexusformat.org/definitions/timeline?daysback=30

If you wish to receive an email when a change is made to the repository you should join the appropriate
Mailing Lists (page 64).

XML RSS Feed icon

Alternatively, you can use an RSS feed to keep abreast of changes. TRAC provides a link to its
RSS feed on pages with an orange XML RSS Feed icon at their foot such as:

There are pages that show the subversion repository activity in a timeline format or a tabular (revision log)
format.

code (library and applications) repository timeline http://trac.nexusformat.org/code/timeline

definitions repository timeline http://trac.nexusformat.org/definitions/timeline

code repository revision log http://trac.nexusformat.org/code/log

definitions repository revision log http://trac.nexusformat.org/definitions/log

Login

To update files in these repositories you will need to use a subversion client such as TortoiseSVN/ 21 for
Microsoft Windows or svn for command-line shells and also provide your NeXus Wiki username and
password. Note that for subversion write access:

• If your Wiki username contains a space, write it with a space (i.e. do not replace the space with an _
as is done in WIKI URLs)

• You cannot use a temporary password (i.e. one that was emailed to you in response to a request).
You must first log into MediaWiki with the temporary password and then go to account NeXus wiki
Preferences and change the password.

• Your Wiki account must have an email address associated with it and this address must have been
validated. To provide and/or validate your email address, log in and go to your account NeXus wiki
Preferences. section.

• If you have login problems and have not changed your WIKI password since 20th October 2006,
please go to the NeXus wiki login page and request to be emailed a new password. To synchronise
TRAC/Subversion/MediaWiki required some changes to the authentication system which will have
invalidated passwords set prior to that date.

21 http://tortoisesvn.tigris.org/‘

66 Chapter 2. NeXus: User Manual

http://trac.nexusformat.org/code/timeline
http://trac.nexusformat.org/definitions/timeline
http://trac.nexusformat.org/code/log
http://trac.nexusformat.org/definitions/log
http://tortoisesvn.tigris.org

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

Here are the URLs to access the subversion repositories as a developer:

code for library/applications https://svn.nexusformat.org/code/trunk

definitions for NXDL classes https://svn.nexusformat.org/definitions/trunk

checkout the code trunk

svn co --username "use your WIKI Username" https://svn.nexusformat.org/code/trunk nexus_code

Please report any problems via the Issue Reporting (page 68) system.

Committing Changes

As well as needing a valid account, you will not be able to check-in changes unless you indicate (in the log
message attached to the commit) which current issues on the Issue Reporting (page 68) system the changes
either fix or refer to. This is done by enclosing special phrases in the commit message of the form:

1 command #1
2 command #1, #2
3 command #1 & #2
4 command #1 and #2

where command is one of the commands detailed below and #1 means issue number 1 on the system, etc.
You can have more then one command in a message. The following commands are supported and there is
more then one spelling for each command (to make this as user-friendly as possible):

closes, fixes The specified issue numbers are closed with the contents of this commit message being
added to it.

references, refs, addresses, re The specified issue numbers are left in their current status,
but the contents of this commit message are added to their notes.

For example, the commit message

Changed blah and foo to do this or that. Fixes #10 and #12, and refs #12.

This will close issues #10 and #12, and add a note to #12 on the Issue Reporting (page 68) system. For a list
of current issues, see:

• Active tickets for the NeXus code library: http://trac.nexusformat.org/code/report/1

• Active tickets for NeXus definitions: http://trac.nexusformat.org/definitions/report/1

URLs described in this section

Many Uniform Resource Locators (URLs) have been used in this section. This is a table describing them.

Subversion revision management software http://subversion.apache.org/

ViewVC versions control repository viewing software http://www.viewvc.org/

TRAC issue management software http://trac.edgewall.org

TortoiseSVN, Windows subversion client http://tortoisesvn.tigris.org/

2.7. NeXus Community 67

https://svn.nexusformat.org/code/trunk
https://svn.nexusformat.org/definitions/trunk
http://trac.nexusformat.org/code/report/1
http://trac.nexusformat.org/definitions/report/1
http://subversion.apache.org/
http://www.viewvc.org/
http://trac.edgewall.org
http://tortoisesvn.tigris.org/

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

NeXus code (library and applications) subversion repository http://svn.nexusformat.org/code/

NeXus definitions subversion repository http://svn.nexusformat.org/definitions/

ViewVC view of NeXus code (library and applications) repository http://svn.nexusformat.org/viewvc/NeXusCode

ViewVC view of NeXus definitions repository http://svn.nexusformat.org/viewvc/NeXusDefinitions

TRAC view of NeXus code (library and applications) repository http://trac.nexusformat.org/code/browser

NeXus code (library and applications) revision log http://trac.nexusformat.org/code/log

Active tickets for the NeXus code repository http://trac.nexusformat.org/code/report/1

NeXus code repository timeline http://trac.nexusformat.org/code/timeline

TRAC view of NeXus definitions repository http://trac.nexusformat.org/definitions/browser

NeXus definitions revision log http://trac.nexusformat.org/definitions/log

Active tickets for NeXus definitions http://trac.nexusformat.org/definitions/report/1

NeXus definitions repository timeline http://trac.nexusformat.org/definitions/timeline

NeXus code repository (password required) https://svn.nexusformat.org/code/trunk

NeXus definitions repository (password required) https://svn.nexusformat.org/definitions/trunk

Footnote

2.7.4 NeXus Issue Reporting

NeXus is using TRAC 22 for problem/issue reporting. The issue reports (see View current issues below) are
used to guide the NeXus developers in resolving problems as well as implementing new features. As such,
the TRAC tickets for the code and definitions repositories form the basis of a roadmap for NeXus. You
can browse issues without logging on, but to report issues you will need to login using your NeXus WIKI
username and password (the subversion login notes (page 65) mentioned for write access to the Subversion
Server (page 65) apply to TRAC login, too).

Whenever an update is made to a ticket, a message is also posted to the appropriate ticket mailing list
(page 64).

NeXus Code (Library and Applications)

Report a new issue: http://trac.nexusformat.org/code

View current issues: http://trac.nexusformat.org/code/report/1

Archive of ticket update emails: http://lists.nexusformat.org/pipermail/nexus-code-tickets/

repository timeline (recent ticket and code changes): http://trac.nexusformat.org/code/timeline

repository roadmap: http://trac.nexusformat.org/code/roadmap
22 http://trac.edgewall.org

68 Chapter 2. NeXus: User Manual

http://svn.nexusformat.org/code/
http://svn.nexusformat.org/definitions/
http://svn.nexusformat.org/viewvc/NeXusCode
http://svn.nexusformat.org/viewvc/NeXusDefinitions
http://trac.nexusformat.org/code/browser
http://trac.nexusformat.org/code/log
http://trac.nexusformat.org/code/report/1
http://trac.nexusformat.org/code/timeline
http://trac.nexusformat.org/definitions/browser
http://trac.nexusformat.org/definitions/log
http://trac.nexusformat.org/definitions/report/1
http://trac.nexusformat.org/definitions/timeline
https://svn.nexusformat.org/code/trunk
https://svn.nexusformat.org/definitions/trunk
http://trac.nexusformat.org/code
http://trac.nexusformat.org/code/report/1
http://lists.nexusformat.org/pipermail/nexus-code-tickets/
http://trac.nexusformat.org/code/timeline
http://trac.nexusformat.org/code/roadmap
http://trac.edgewall.org

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

NeXus Definitions (NXDL base classes and application definitions)

Report a new issue: http://trac.nexusformat.org/definitions

View current issues: http://trac.nexusformat.org/definitions/report/1

Archive of ticket update emails: http://lists.nexusformat.org/pipermail/nexus-definitions-tickets/

repository timeline (recent ticket and definition changes): http://trac.nexusformat.org/definitions/timeline

repository roadmap: http://trac.nexusformat.org/definitions/roadmap

Footnote

2.8 Installation

This section describes how to install the NeXus API and details the requirements. The NeXus API is
distributed under the terms of the GNU Lesser Public License.

The source code and binary versions for some popular platforms can be found on
http://download.nexusformat.org/kits/. Up to date instructions can be found on the Wiki In case you
need help feel free to contact the nexus mailing list.

2.8.1 Precompiled Binary Installation

Prerequisites

HDF5/HDF4

Since NeXus uses HDF as the main underlying binary format, it is necessary first to install the HDF subrou-
tine libraries and include files before compiling the NeXus API. It is not usually necessary to download the
HDF source code since precompiled object libraries exist for a variety of operating systems including Win-
dows, Mac OS X, Linux, and various other flavors of Unix. Check the HDF web pages for more information:
http://www.hdfgroup.org/

Packages for HDF4 and HDF5 are available for both Fedora (hdf, hdf5, hdf-devel, hdf5-devel) and
Ubuntu/Debian (libhdf4g, libhdf5).

XML

The NeXus API also supports using XML as the underlying on-disk format. This uses the Mini-XML
library, developed by Michael Sweet, which is also available as a precompiled binary library for several
operating systems. Check the Mini-XML web pages for more information: http://www.minixml.org/

Packages for MXML are available for both Fedora (mxml, mxml-devel) and Ubuntu/Debian (libmxml1).

2.8. Installation 69

http://trac.nexusformat.org/definitions
http://trac.nexusformat.org/definitions/report/1
http://lists.nexusformat.org/pipermail/nexus-definitions-tickets/
http://trac.nexusformat.org/definitions/timeline
http://trac.nexusformat.org/definitions/roadmap
http://download.nexusformat.org/kits/
http://www.hdfgroup.org/
http://www.minixml.org/

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

Linux RPM Distribution Kits

An installation kit (source or binary) can be downloaded from: http://download.nexusformat.org/kits/

A NeXus binary RPM (nexus-*.i386.rpm) contains ready compiled NeXus libraries whereas a source RPM
(nexus-*.src.rpm) needs to be compiled into a binary RPM before it can be installed. In general, a binary
RPM is installed using the command

rpm -Uvh file.i386.rpm

or, to change installation location from the default (e.g. /usr/local) area, using

rpm -Uvh --prefix /alternative/directory file.i386.rpm

If the binary RPMS are not the correct architecture for you (e.g. you need x86_64 rather than i386) or the
binary RPM requires libraries (e.g. HDF4) that you do not have, you can instead rebuild a source RPM
(.src.rpm) to generate the correct binary RPM for you machine. Download the source RPM file and then run

rpmbuild --rebuild file.src.rpm

This should generate a binary RPM file which you can install as above. Be careful if you think about
specifying an alternative buildroot for rpmbuild by using --buildroot option as the “buildroot” directory
tree will get remove (so --buildroot / is a really bad idea). Only change buildroot it if the default area
turns out not to be big enough to compile the package.

If you are using Fedora, then you can install all the dependencies by typing

yum install hdf hdf-devel hdf5 hdf5-devel mxml mxml-devel

Microsoft Windows Installation Kit

A Windows MSI based installation kit is available and can be downloaded from:
http://download.nexusformat.org/kits/windows/

Mac OS X Installation Kit

An installation disk image (.dmg) can be downloaded from: http://download.nexusformat.org/kits/macosx/

2.8.2 Source Installation

NeXus Source Code Distribution

The build uses autoconf (so autools are required) to determine what features will be available by your
system. You must have the development libraries installed for all the file backends you want support for
(see above). If you intend to build more than the C language bindings, you need to have the respective build
support in a place where autoconf will pick them up (i.e. python development files, a Java Development Kit,
etc.).

70 Chapter 2. NeXus: User Manual

http://download.nexusformat.org/kits/
http://download.nexusformat.org/kits/windows/
http://download.nexusformat.org/kits/macosx/

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

For more information see the README in the toplevel of the source distribution. In case you need help,
feel free to contact the developers using the nexus-developers mailing list.

Download the appropriate gzipped tar file, unpack it, and run the standard configure procedure from the
resulting nexus directory. For example, for version 4.2.1;

$ tar zxvf nexus-4.2.1.tar.gz
$ cd nexus-4.2.1
$. / configure

To find out how to customize the installation, e.g., to choose different installation directories, type

$. / configure --help

Carefully check the final output of the configure run. Make sure all features requested are actually
enabled.

$ make
$ make install

See the README file for further instructions.

Cygwin Kits

HDF4 is not supported under CYGWIN - both HDF5 and MXML are supported and can be downloaded and
built as usual. When configuring HDF5 you should explicitly pass a prefix to the configure script to make
sure the libraries are installed in a “usual” location i.e.

./configure --prefix=/usr/local/hdf5

Otherwise you will have to use the --with-hdf5=/path/to/hdf5 option later when configuring
NeXus to tell it where to look for hdf5. After building hdf5, configure and build NeXus using the in-
structions for source code distribution above.

2.9 Verification and validation of files

The intent of verification and validation of files is to ensure, in an unbiased way, that a given file conforms
to the relevant specifications. NeXus uses various automated tools to validate files. These tools include
conversion of content from HDF to XML and transformation (via XSLT) from XML format to another such
as NXDL, XSD, and Schematron. This chapter will first provide an overview of the process, then define
the terms used in validation, then describe how multiple base classes or application definitions might apply
to a given NeXus data file, and then describe the various validation techniques in more detail. Validation
does not check that the data content of the file is sensible; this requires scientific interpretation based on the
technique.

Validation is useful to anyone who manipulates or modifies the contents of NeXus files. This includes
scientists/users, instrument staff, software developers, and those who might mine the files for metadata.
First, the scientist or user of the data must be certain that the information in a file can be located reliably.
The instrument staff or software developer must be confident the information they have written to the file

2.9. Verification and validation of files 71

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

has been located and formatted properly. At some time, the content of the NeXus file may contribute to a
larger body of work such as a metadata catalog for a scientific instrument, a laboratory, or even an entire
user facility.

2.9.1 Overview

NeXus files adhere to a set of rules and can be tested against these rules for compliance. The rules are
implemented using standard tools and can themselves be tested to verify compliance with the standards for
such definitions. Validation includes the testing of both NeXus data files and the NXDL specifications that
describe the rules.

The rules for writing NeXus data files are different than the rules for writing NeXus class definitions. To
validate a NeXus data file, these two rule sets must eventually merge, as shown in the next figure. The
data file (either HDF4, HDF5, or XML) is first converted into an internal format to facilitate validation,
including data types, array dimensions, naming, and other items. Most of the data is not converted since
data validation is non-trivial. Also note that the units are not validated. All the NXDL files are converted
into a single Schematron file (again, internal use for validation) only when NXDL revisions are checked into
the NeXus definitions repository as NXDL changes are not so frequent.

Figure 2.8: Flowchart of the NeXus validation process.

NeXus data files NeXus data files (also known as NeXus data file instances) are validated to ensure the
various parts of the data file are arranged according to the governing NXDL specifications used in that
file instance.

Note: Since NeXus has several rules that are quite difficult to apply in either XSD or
Schematron, direct validation of data files using standard tools is not possible. To validate
NeXus data files, it is necessary to use nxvalidate.

NeXus Definition Language (NXDL) specification files NXDL files are validated to ensure they adhere
to the rules for writing NeXus base classes and application definitions.

2.9.2 Definitions of these terms

Let’s be clear about some terms used in this section.

72 Chapter 2. NeXus: User Manual

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

HDF Hierarchical Data Format from The HDF Group. NeXus data files using HDF may be stored in either
version 4 (HDF4) or version 5 (HDF5). New NeXus HDF files should only use HDF5. The preferred
file extensions (but not required) include .hdf, .h5, .nxs, and .nx5.

NXDL NeXus Definition Language files define the spcifications for NeXus base classes, application defi-
nitions, and contributed classes and definitions. It is fully described in the NXDL chapter in Volume
II of this documentation.

Schematron Schematron 23 is an alternative to XSD and is used to validate the content and structure of an
XML file. NeXus uses Schematron internally to validate data files.

Validation File validation is the comparison of file contents, in an unbiased way, with the set of rules that
define the structure of such files.

XML The eXtensible Markup Language (XML) 24 is a standard business tool for the exchange of infor-
mation. It is broadly supported by a large software library in many languages. NeXus uses XML for
several purposes: data files, NXDL definitions, rules, and XSLT transformations.

XSD XML files are often defined by a set of rules (or schema). A common language used to implement
these rules is XML Schema (XSD) 25 Fundamentally, all XML, XSD, XSLT, and Schematron files
are XML.

XSLT XML files can be flexible enough to convert from one set of rules to another. An example is when one
company wishes to exchange catalog or production information with another. The XML StyLsheet
Transformation (XSLT) 26 language is often used to describe each direction of the conversion of the
XML files between the two rule sets.

2.9.3 NeXus data files may use multiple base classes or application definitions

NeXus data files may have more than one data set or may have multiple instances of just about any base
class or even application definitions. The NeXus data file validation is prepared to handle this without any
special effort by the provider of the data file.

2.9.4 Validation techniques

File validation is the process to determine if a given file is prepared consistent with a set of guidelines or
rules. In NeXus, there are several different types of files. First, of course, is the data file yet it can be
provided in one of several forms: HDF4, HDF5, or XML. Specifications for data files are provided by
one or (usually) more NeXus definition files (NXDL, for short). These NXDL files are written in XML
and validated by the NXDL specification which is written in the XML Schema (XSD) language. Thus,
automated file verification is available for data files, definition files, and the rules for definition files.

23 http://www.schematron.com
24 http://www.w3schools.com/xml
25 http://www.w3schools.com/schema
26 http://www.w3schools.com/xsl/

2.9. Verification and validation of files 73

http://www.schematron.com
http://www.w3schools.com/xml
http://www.w3schools.com/schema
http://www.w3schools.com/xsl/

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

Validation of NeXus data files

Each NeXus data file can be validated against the NXDL rules. (The full suite of NXDL specifications
is converted into Schematron rules by an XSLT transformation and then combined into a single file. It is
not allowed to have a NeXus base class and also an application definition with the same name since one
will override the other in the master Schematron file) The validation is done using Schematron and the
NXvalidate program. Schematron was selected, rather than XML Schema (XSD), to permit established
rules for NeXus files, especially the rule allowing the nodes within NXentry to appear in any order.

The validation process is mainly checking file structure (presence or absence of groups/fields) - it is usually
impossible to check the actual data itself, other than confirm that it is of the correct data type (string, float
etc.). The only exception is when the NXDL specification is either a fixed value or an enumeration - in
which case the data is checked.

During validation, the NeXus data file instance (either HDF or XML) is first converted into an XML file in
a form that facilitates validation (e.g with large numeric data removed). Then the XML file is validated by
Schematron against the schema/all.sch file.

Validation of NeXus Definition Language (NXDL) specification files

Each NXDL file must be validated against the rules that define how NXDL files are to be arranged. The
NXDL rules are specified in the form of XML Schema (XSD).

Standard tools (validating editor or command line or support library) can be used to validate any NXDL
file. Here’s an example using xmllint from a directory that contains nxdl.xsd, nxdlTypes.xsd,
and applications/NXsas.nxdl.xml:

Use of xmllint to validate a NXDL specification.

xmllint --noout --schema nxdl.xsd applications/NXsas.nxdl.xml

Validation of the NXDL rules

NXDL rules are specified using the rules of XML Schema (XSD). The XSD syntax of the rules is validated
using standard XML file validation tools: either a validating editor (such as oXygen, xmlSpy, or eclipse) or
common UNIX/Linux command line tools

Use of xmllint to validate the NXDL rules.

xmllint --valid nxdl.xsd

The validating editor method is used by the developers while the xmllint command line tool is the auto-
mated method used by the NeXus definitions subversion repository.

74 Chapter 2. NeXus: User Manual

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

Validation of XSLT files

XSLT transformations are validated using standard tools such as a validating editor or xmllint.

Transformation of NXDL files to Schematron

Schematron 1 is a rule-based language that allows very specific validation of an XML document. Its advan-
tages over using XSD schema are that:

• more specific pattern-based rules based on data content can be written

• full XSLT/XPath expression syntax available for writing validation tests

• error messages can be customised and thus more meaningful

• It is easier to validate documents when entities can occur in any order.

XSD does provide a mechanism for defining a class structure and inheritance, so its usage within NeXus in
addition to schematron has not been ruled out. But for a basic validation of file content, schematron looks
best.

The NXDL definition files are converted into a set of Schematron rules using the xslt/nxdl2sch.xsl
XSLT stylesheet. The NeXus instance file (either in XML, HDF4, or HDF5) is turned into a reduced
XML validation file. This file is very similar to a pure NeXus XML file, but with additional metadata for
dimensions and also with most of the actual numeric data removed.

The validation process then compares the set of Schematron rules against the reduced XML validation file.
Schematron itself is implemented as a set of XSLT transforms. NeXus includes the Schematron files, as
well as the Java based XSLT engine saxon.

The java based nxvalidate GUI can be run to validate files.

Currently, the structure of the file is validated (i.e. valid names are used at the correct points), but this will be
extended to array dimensions and link targets. Error messages are printed about missing mandatory fields,
and informational messages are printed about fields that are neither optional or mandatory (in case they are
a typing error). Even non-standard names must comply with a set of rules (e.g. no spaces are allowed in
names). Enumerations are checked that they conform to an allowed value. The data type is checked and the
units will also be checked.

2.10 NeXus Utilities

There are many utilities available to read, browse, write, and use NeXus data files. Some are provided by
the NeXus technical group while others are provided by the community. Still, other tools listed here can
read or write one of the low-level file formats used by NeXus (HDF4, HDF5, or XML).

2.10.1 Utilities supplied with NeXus

Most of these utility programs are run from the command line. It will be noted if a program provides a
graphical user interface (GUI). Short descriptions are provided here with links to further information, as
available.

2.10. NeXus Utilities 75

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

nxbrowse NeXus Browser

nxconvert Utility to convert a NeXus file into HDF4/HDF5/XML/...

nxdir nxdir is a utility for querying a NeXus file about its contents. Full documentation can be found by
running this command:

nxdir -h

nxingest

nxingest extracts the metadata from a NeXus file to create an XML file according to a map-
ping file. The mapping file defines the structure (names and hierarchy) and content (from either
the NeXus file, the mapping file or the current time) of the output file. See the man page for
a description of the mapping file. This tool uses the NAPI. Thus, any of the supported formats
(HDF4, HDF5 and XML) can be read.

nxsummary Use nxsummary to generate summary of a NeXus file. This program relies heavily on a
configuration file. Each item tag in the file describes a node to print from the NeXus file. The path
attribute describes where in the NeXus file to get information from. The label attribute will be
printed when showing the value of the specified field. The optional operation attribute provides
for certain operations to be performed on the data before printing out the result. See the source code
documentation for more details.

nxtranslate nxtranslate is an anything to NeXus converter. This is accomplished by using translation
files and a plugin style of architecture where nxtranslate can read from new formats as plug-
ins become available. The documentation for nxtranslate describes its usage by three types of
individuals:

• the person using existing translation files to create NeXus files

• the person creating translation files

• the person writing new retrievers

All of these concepts are discussed in detail in the documentation provided with the source code.

nxvalidate From the source code documentation:

“Utility to convert a NeXus file into HDF4/HDF5/XML/...”

Note: this command-line tool is different than the newer Java GUI program: NXvalidate.

NXvalidate Java program (in development in 2010) to check any NeXus data file for conformance with
the NeXus NXDL-based standard. Note: This Java GUI is different than the command-line tool:
nxvalidate.

NXplot An extendable utility for plotting any NeXus file. NXplot is an Eclipse-based GUI project in Java
to plot data in NeXus files. (The project was started at the first NeXus Code Camp in 2009.)

2.10.2 Data Analysis

The list of applications below are some of the utilities that have been developed (or modified) to read/write
NeXus files as a data format. It is not intended to be a complete list of all available packages.

76 Chapter 2. NeXus: User Manual

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

DAVE (http://www.ncnr.nist.gov/dave/) DAVE is an integrated environment for the reduction, visualiza-
tion and analysis of inelastic neutron scattering data. It is built using IDL (Interactive Data Language)
from ITT Visual Information Solutions.

GDA (http://www.opengda.org) The GDA project is an open-source framework for creating customised
data acquisition and analysis software for science facilities such as neutron and X-ray sources.

Gumtree (http://docs.codehaus.org/display/GUMTREE) Gumtree is an open source project, providing
a graphical user interface for instrument status and control, data acquisition and data reduction.

ISAW (ftp://ftp.sns.gov/ISAW/) The Integrated Spectral Analysis Workbench software project (ISAW) is
a Platform-Independent system Data Reduction/Visualization. ISAW can be used to read, manipulate,
view, and save neutron scattering data. It reads data from IPNS run files or NeXus files and can merge
and sort data from separate measurements.

LAMP (http://www.ill.eu/data_treat/lamp/>) LAMP (Large Array Manipulation Program) is designed
for the treatment of data obtained from neutron scattering experiments at the Institut Laue-Langevin.
However, LAMP is now a more general purpose application which can be seen as a GUI-laboratory
for data analysis based on the IDL language.

Mantid (http://www.mantidproject.org/) The Mantid project provides a platform that supports high-
performance computing on neutron and muon data. It is being developed as a collaboration between
Rutherford Appleton Laboratory and Oak Ridge National Laboratory.

NeXpy (http://trac.mcs.anl.gov/projects/nexpy) The goal of NeXpy is to provide a simple graphical envi-
ronment, coupled with Python scripting capabilities, for the analysis of X-Ray and neutron scattering
data. (It was decided at the NIAC 2010 meeting that a large portion of this code would be adopted in
the future by NeXus and be part of the distribution)

OpenGENIE (http://www.opengenie.org/) A general purpose data analysis and visualisation package pri-
marily developed at the ISIS Facility, Rutherford Appleton Laboratory.

PyMCA (http://pymca.sourceforge.net/) PyMca is a ready-to-use, and in many aspects state-of-the-art,
set of applications implementing most of the needs of X-ray fluorescence data analysis. It also pro-
vides a Python toolkit for visualization and analysis of energy-dispersive X-ray fluorescence data.
Reads, browses, and plots data from NeXus HDF5 files.

2.10.3 HDF Tools

Here are some of the generic tools that are available to work with HDF files. In addition to the software
listed here there are also APIs for many programming languages that will allow low level programmatic
access to the data structures.

HDF Group command line tools (http://www.hdfgroup.org/products/hdf5_tools/#h5dist/) There are
various command line tools that are available from the HDF Group, these are usually shipped with
the HDF5 kits but are also available for download separately.

HDFexplorer (http://www.space-research.org/) A data visualization program that reads Hierarchical
Data Format files (HDF, HDF-EOS and HDF5) and also netCDF data files.

HDFview (http://www.hdfgroup.org) A Java based GUI for browsing (and some basic plotting) of HDF
files.

2.10. NeXus Utilities 77

http://www.ncnr.nist.gov/dave/
http://www.opengda.org
http://docs.codehaus.org/display/GUMTREE
ftp://ftp.sns.gov/ISAW/
http://www.ill.eu/data_treat/lamp/
http://www.mantidproject.org/
http://trac.mcs.anl.gov/projects/nexpy
http://www.opengenie.org/
http://pymca.sourceforge.net/
http://www.hdfgroup.org/products/hdf5_tools/#h5dist/
http://www.space-research.org/
http://www.hdfgroup.org

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

IDL (http://www.ittvis.com/) IDL is a high-level technical computing language and interactive environ-
ment for algorithm development, data visualization, data analysis, and numeric computation.

IgorPro (http://www.wavemetrics.com/) IGOR Pro is an extraordinarily powerful and extensible scien-
tific graphing, data analysis, image processing and programming software tool for scientists and en-
gineers.

MATLAB (http://www.mathworks.com/) MATLAB is a high-level technical computing language and in-
teractive environment for algorithm development, data visualization, data analysis, and numeric com-
putation.

2.11 Frequently Asked Questions

This is a list of commonly asked questions concerning the NeXus data format.

1. How many facilities use NeXus?

This is not easy to say, not all facilities using NeXus actively participate in the committee.
Some facilities have reported their adoption status on the Facilities Wiki page. Please have
a look at this list. Keep in mind that it is not complete.

2. NeXus files are binary? This is crazy! How am I supposed to see my data?

NeXus files are not per se binary. If you use the XML backend the data are stored in a
relatively human readable form (see this example). This backend however is only recom-
mended for very small data sets. With the multidimensional data that is routinely recorded
on many modern instruments it is very difficult anyway to retrieve useful information on
a VT100 terminal. If you want to try, for example nxbrowse is a utility provided by the
NeXus community that can be very helpful to those who want to inspect their files and
avoid graphical applications. For larger data volumes the binary backends used with the
appropriate tools are by far superior in terms of efficiency and speed and most users happily
accept that after having worked with supersized “human readable” files for a while.

3. What on-disk file format should I choose for my data?

HDF5 is the default file container to use for NeXus data. It is the recommended format for
all applications. HDF4 is still supported as a on disk format for NeXus but for new instal-
lations preference should be given to HDF5. The XML backend is available for special use
cases. Choose this option with care considering the space and speed implications.

4. Why are the NeXus classes so complicated? I’ll never store all that information

The NeXus classes are essentially glossaries of terms. If you need to store a piece of
information, consult the class definitions to see if it has been defined. If so, use it. It is not
compulsory to include every item that has been defined in the base class if it is not relevant
to your experiment. On the other hand, a NeXus application definition lists a smaller set
of compulsory items that should allow other researchers or software to analyze your data.
You should really follow the application definition that corresponds to your experiment to
take full advantage of NeXus.

5. I don’t like NeXus. It seems much faster and simpler to develop my own file format. Why should I
even consider NeXus?

78 Chapter 2. NeXus: User Manual

http://www.ittvis.com/
http://www.wavemetrics.com/
http://www.mathworks.com/

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

If you consider using an efficient on disk storage format, HDF5 is a better choice than most
others. It is fast and efficient and well supported in all mainstream programming languages
and a fair share of popular analysis packages. The format is so widely used and backed by
a big organisation that it will continue to be supported for the foreseeable future. So if you
are going to use HDF5 anyway, why not use the NeXus definition to lay out the data in a
standardised way? The NeXus community spent years trying to get the standard right and
while you will not agree with every single choice they made in the past, you should be able
to store the data you have in a quite reasonable way. If you do not comply with NeXus,
chances are most people will perceive your format as different but not necessarily better
than NeXus by any large measure. So it may not be worth the effort. Seriously.

If you encounter any problems because the classes are not sufficient to describe your con-
figuration, please contact the NIAC Executive Secretary explaining the problem, and post
a suggestion at the relevant class wiki page. Or raise the problem in one of the mailing
lists. The NIAC is always willing to consider new proposals.

6. I want to produce an application definition. How do I go about it?

Read the NXDL Tutorial in Creating a NXDL Specification (page 52) and have a try. You
can ask for help on the mailing lists. Once you have a definition that is working well for at
least your case, you can submit it to the NIAC for acceptance as a standard. The procedures
for acceptance are defined in the NIAC constitution. 27

7. What is the purpose of NXdata?

NXdata contains links to the data stored elsewhere in the NXentry. It identifies the
default plottable data. This is one of the basic motivations (see Simple plotting (page 15))
for the NeXus standard. The choice of the name NXdata is historic and does not really
reflect its function.

8. How do I identify the plottable data?

See the section: Find the plottable data (page 43).

9. How can I specify reasonable axes for my data?

See the section: Linking Multi Dimensional Data with Axis Data (page 41).

10. Why aren’t NXsample and NXmonitor groups stored in the NXinstrument group?

A NeXus file can contain a number of NXentry groups, which may represent different
scans in an experiment, or sample and calibration runs, etc. In many cases, though by
no means all, the instrument has the same configuration so that it would be possible to
save space by storing the NXinstrument group once and using multiple links in the
remaining NXentry groups. It is assumed that the sample and monitor information would
be more likely to change from run to run, and so should be stored at the top level.

11. Specifications are complicated and often provide too much information for what I need. Where can I
find some good example data files?

27 Refer to the most recent version of the NIAC constitution on the NIAC wiki: http://www.nexusformat.org/NIAC

2.11. Frequently Asked Questions 79

http://www.nexusformat.org/NIAC

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

There are a few checked into the definitions repository. At the moment the selection is
quite limited and not very representative. This repository will be edited as more example
files become available.

12. Can I use a NXDL specification to parse a NeXus data file?

This should be possible as there is nothing in the NeXus specifications to prevent this but it
is not implemented in NAPI. You would need to implement it for yourself. You would be
wise to consult the algorithms in the Java version of NXvalidate (see NXvalidate-java)
for more details.

13. Why do I need to specify the NAPItype? My programming language does not need that information
and I don’t care about C and colleagues. Can I leave it out?

NAPItype is necessary. When implementing the NeXus-XML API we strived to make
this as general as HDF and reasonably efficient for medium sized datasets. This is why we
store arrays as a large bunch of numbers in C-storage order. And we need the NAPItype
to figure out the dimensions of the dataset.

14. Do I have to use the NAPI subroutines? Can’t I read (or write) the NeXus data files with my own
routines?

You are not required to use the NAPI to write valid NeXus data files. It is possible to avoid
the NAPI to write and read valid NeXus data files. But, the programmer who chooses this
path must have more understanding of how the NeXus HDF or XML data file is written.
Validation of data files written without the NAPI is strongly encouraged.

15. I’m using links to place data in two places. Which one should be the data and which one is the link?

Note: NeXus uses HDF5 hard links

In HDF, a hard link points to a data object. A soft link points to a directory entry. Since
NeXus uses hard links, there is no need to distinguish between two (or more) directory
entries that point to the same data.

Both places have pointers to the actual data. That is the way hard links work in HDF5.
There is no need for a preference to either location. NeXus defines a target attribute to
label one directory entry as the source of the data (in this, the link target). This has value
in only a few situations such as when converting the data from one format to another. By
identifying the original in place, duplicate copies of the data are not converted.

16. If I write my data according to the current specification for NXsas (substitute any other applica-
tion definition), will other software be able to read my data?

Yes. NXsas, like other ClassDefinitions-Application, defines and names the minimum infor-
mation required for analysis or data processing. As long as all the information required by the
specification is present, analysis software should be able to process the data. If other information
is also present, there is no guarantee that small-angle scattering analysis software will notice.

80 Chapter 2. NeXus: User Manual

CHAPTER

THREE

NEXUS: REFERENCE
DOCUMENTATION

3.1 NAPI: NeXus Application Programmer Interface

3.1.1 Java Interface

This section includes installation notes, instructions for running NeXus for Java programs and a brief intro-
duction to the API.

The Java API for NeXus (jnexus) was implemented through the Java Native Interface (JNI) to call on to
the native C library. This has a number of disadvantages over using pure Java, however the most popular file
backend HDF5 is only available using a JNI wrapper anyway.

Acknowledgement

This implementation uses classes and native methods from NCSA’s Java HDF Interface project. Basically
all conversions from native types to Java types is done through code from the NCSA HDF group. Without
this code the implementation of this API would have taken much longer. See NCSA’s copyright for more
information.

Installation

Requirements

Caution: Documentation is old and may need revision.

For running an application with jnexus an recent Java runtime environment (JRE) will do.

In order to compile the Java API for NeXus a Java Development Kit is required on top of the build require-
ments for the C API.

81

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

Installation under Windows

1. Copy the HDF DLL’s and the file jnexus.dll to a directory in your path. For instance
C:\\Windows\\system32.

2. Copy the jnexus.jar to the place where you usually keep library jar files.

Installation under Unix

The jnexus.so shared library as well as all required file backend .so libraries are required as well as
the jnexus.jar file holding the required Java classes. Copy them wherever you like and see below for
instructions how to run programs using jnexus.

Running Programs with the NeXus API for Java

In order to successfully run a program with jnexus, the Java runtime systems needs to locate two items:

1. The shared library implementing the native methods.

2. The nexus.jar file in order to find the Java classes.

Locating the shared libraries

The methods for locating a shared library differ between systems. Under Windows32 systems the best
method is to copy the jnexus.dll and the HDF4, HDF5 and/or XML-library DLL files into a directory
in your path.

On a UNIX system, the problem can be solved in three different ways:

1. Make your system administrator copy the jnexus.so file into the systems default shared library
directory (usually /usr/lib or /usr/local/lib).

2. Put the jnexus.so file wherever you see fit and set the LD_LIBRARY_PATH environment variable
to point to the directory of your choice.

3. Specify the full pathname of the jnexus shared library on the java command line with the
-Dorg.nexusformat.JNEXUSLIB=full-path-2-shared-library option.

Locating jnexus.jar

This is easier, just add the the full pathname to jnexus.jar to the classpath when starting java. Here are
examples for a UNIX shell and the Windows shell.

UNIX example shell script to start jnexus.jar

82 Chapter 3. NeXus: Reference Documentation

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

1 #!/sbin/sh
2 java -classpath /usr/lib/classes.zip:../jnexus.jar:. \
3 -Dorg.nexusformat.JNEXUSLIB=../libjnexus.so TestJapi

Windows 32 example batch file to start jnexus.jar

1 set JL=-Dorg.nexusformat.JNEXUSLIB=..\jnexus\bin\win32\jnexus.dll
2 java -classpath C:\jdk1.5\lib\classes.zip;..\jnexus.jar;. %JL% TestJapi

Programming with the NeXus API for Java

The NeXus C-API is good enough but for Java a few adaptions of the API have been made in order to match
the API better to the idioms used by Java programmers. In order to understand the Java-API, it is useful to
study the NeXus C-API because many methods work in the same way as their C equivalents. A full API
documentation is available in Java documentation format. For full reference look especially at:

• The interface NeXusFileInterface first. It gives an uncluttered view of the API.

• The implementation NexusFile which gives more details about constructors and constants. How-
ever this documentation is interspersed with information about native methods which should not be
called by an application programmer as they are not part of the standard and might change in future.

See the following code example for opening a file, opening a vGroup and closing the file again in order to
get a feeling for the API:

fragment for opening and closing

1 // $Id: napi-java-prog1.java 1091 2012-05-28 21:10:09Z Pete Jemian $
2 try{
3 NexusFile nf = new NexusFile(filename, NexusFile.NXACC_READ);
4 nf.opengroup("entry1","NXentry");
5 nf.finalize();
6 }catch(NexusException ne) {
7 // Something was wrong!
8 }

Some notes on this little example:

• Each NeXus file is represented by a NexusFile object which is created through the constructor.

• The NexusFile object takes care of all file handles for you. So there is no need to pass in a handle
anymore to each method as in the C language API.

• All error handling is done through the Java exception handling mechanism. This saves all the code
checking return values in the C language API. Most API functions return void.

• Closing files is tricky. The Java garbage collector is supposed to call the finalize method for each
object it decides to delete. In order to enable this mechanism, the NXclose() function was replaced
by the finalize() method. In practice it seems not to be guaranteed that the garbage collector

3.1. NAPI: NeXus Application Programmer Interface 83

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

calls the finalize() method. It is safer to call finalize() yourself in order to properly close
a file. Multiple calls to the finalize() method for the same object are safe and do no harm.

Data Writing and Reading

Again a code sample which shows how this looks like:

fragment for writing and reading

1 // $Id: napi-java-datarw1.java 1091 2012-05-28 21:10:09Z Pete Jemian $
2 int idata[][] = new idata[10][20];
3 int iDim[] = new int[2];
4

5 // put some data into idata.......
6

7 // write idata
8 iDim[0] = 10;
9 iDim[1] = 20;

10 nf.makedata("idata",NexusFile.NX_INT32,2,iDim);
11 nf.opendata("idata");
12 nf.putdata(idata);
13

14 // read idata
15 nf.getdata(idata);

The dataset is created as usual with makedata() and opened with putdata(). The trick is in
putdata(). Java is meant to be type safe. One would think then that a putdata() method would
be required for each Java data type. In order to avoid this, the data to write() is passed into putdata()
as type Object. Then the API proceeds to analyze this object through the Java introspection API and
convert the data to a byte stream for writing through the native method call. This is an elegant solution with
one drawback: An array is needed at all times. Even if only a single data value is written (or read) an array
of length one and an appropriate type is the required argument.

Another issue are strings. Strings are first class objects in Java. HDF (and NeXus) sees them as dumb
arrays of bytes. Thus strings have to be converted to and from bytes when reading string data. See a writing
example:

String writing

1 // $Id: napi-java-datarw2.java 1091 2012-05-28 21:10:09Z Pete Jemian $
2 String ame = "Alle meine Entchen";
3 nf.makedata("string_data",NexusFile.NX_CHAR,
4 1,ame.length()+2);
5 nf.opendata("string_data");
6 nf.putdata(ame.getBytes());

And reading:

84 Chapter 3. NeXus: Reference Documentation

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

String reading

1 // $Id: napi-java-datarw2.java 1091 2012-05-28 21:10:09Z Pete Jemian $
2 String ame = "Alle meine Entchen";
3 nf.makedata("string_data",NexusFile.NX_CHAR,
4 1,ame.length()+2);
5 nf.opendata("string_data");
6 nf.putdata(ame.getBytes());

The aforementioned holds for all strings written as SDS content or as an attribute. SDS or vGroup names
do not need this treatment.

Inquiry Routines

Let us compare the C-API and Java-API signatures of the getinfo() routine (C) or method (Java):

C API signature of getinfo()

1 /* $Id: frag-c-api-sig-getinfo.c 1091 2012-05-28 21:10:09Z Pete Jemian $ */
2 /* C -API */
3 NXstatus NXgetinfo(NXhandle handle, int *rank, int iDim[],
4 int *datatype);

Java API signature of getinfo()

1 // $Id: frag-c-api-sig-getinfo.java 1091 2012-05-28 21:10:09Z Pete Jemian $
2 / / Java
3 void getinfo(int iDim[], int args[]);

The problem is that Java passes arguments only by value, which means they cannot be modified by the
method. Only array arguments can be modified. Thus args in the getinfo() method holds the rank
and datatype information passed in separate items in the C-API version. For resolving which one is which,
consult a debugger or the API-reference.

The attribute and vGroup search routines have been simplified using Hashtables. The Hashtable returned
by groupdir() holds the name of the item as a key and the classname or the string SDS as the stored
object for the key. Thus the code for a vGroup search looks like this:

vGroup search

1 // $Id: napi-java-inquiry1.java 1091 2012-05-28 21:10:09Z Pete Jemian $
2 nf.opengroup(group,nxclass);
3 h = nf.groupdir();
4 e = h.keys();
5 System.out.println("Found in vGroup entry:");
6 while(e.hasMoreElements())

3.1. NAPI: NeXus Application Programmer Interface 85

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

7 {
8 vname = (String)e.nextElement();
9 vclass = (String)h.get(vname);

10 System.out.println(" Item: " + vname + " class: " + vclass);
11 }

For an attribute search both at global or SDS level the returned Hashtable will hold the name as the key and
a little class holding the type and size information as value. Thus an attribute search looks like this in the
Java-API:

attribute search

1 // $Id: napi-java-inquiry2.java 1091 2012-05-28 21:10:09Z Pete Jemian $
2 Hashtable h = nf.attrdir();
3 Enumeration e = h.keys();
4 while(e.hasMoreElements())
5 {
6 attname = (String)e.nextElement();
7 atten = (AttributeEntry)h.get(attname);
8 System.out.println("Found global attribute: " + attname +
9 " type: "+ atten.type + " ,length: " + atten.length);

10 }

For more information about the usage of the API routines see the reference or the NeXus C-API reference
pages. Another good source of information is the source code of the test program which exercises each API
routine.

Known Problems

These are a couple of known problems which you might run into:

Memory As the Java API for NeXus has to convert between native and Java number types a copy of the data
must be made in the process. This means that if you want to read or write 200MB of data your memory
requirement will be 400MB! This can be reduced by using multiple getslab()/putslab() to
perform data transfers in smaller chunks.

Java.lang.OutOfMemoryException By default the Java runtime has a low default value for the
maximum amount of memory it will use. This ceiling can be increased through the -mxXXm option to
the Java runtime. An example: java -mx512m ... starts the Java runtime with a memory ceiling
of 512MB.

Maximum 8192 files open The NeXus API for Java has a fixed buffer for file handles which allows only
8192 NeXus files to be open at the same time. If you ever hit this limit, increase the MAXHANDLE
define in native/handle.h and recompile everything.

On-line Documentation

The following documentation is browsable online:

86 Chapter 3. NeXus: Reference Documentation

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

1. The Doxygen API documentation 1

2. A verbose tutorial for the NeXus for Java API.

3. The API Reference.

4. Finally, the source code for the test driver for the API which also serves as a documented usage
example.

Footnote

3.2 NXDL: The NeXus Definition Language

Information in NeXus data files is arranged by a set of rules. These rules facilitate the exchange of data
between scientists and software by standardizing common terms such as the way engineering units are
described and the names for common things and the way that arrays are described and stored.

The set of rules for storing information in NeXus data files is declared using the NeXus Definition Language.
NXDL itself is governed by a set of rules (a schema) that should simplify learning the few terms in NXDL.
In fact, the NXDL rules, written as an XML Schema, are machine-readable using industry-standard and
widely-available software tools for XML files such as xsltproc, xmllint, and DocBook. This chapter
describes the rules and terms from which NXDL files are constructed.

3.2.1 Introduction

NeXus Definition Language (NXDL) files allow scientists to define the nomenclature and arrangement of
information in NeXus data files. These NXDL files can be specific to a scientific discipline such as to-
mography or small-angle scattering, specific analysis or data reduction software, or even to define another
component (base class) used to design and build NeXus data files.

In addition to this chapter and the Tutorial (page 48) in Volume I, look at the set of NeXus NXDL files to
learn how to read and write NXDL files. These files are available from the NeXus definitions repository
and are most easily viewed through the TRAC site: http://trac.nexusformat.org/definitions/browser/trunk in
the base_classes, applications, and contributed directories. The rules (expressed as XML

1 http://download.nexusformat.org/doxygen/html-java/

3.2. NXDL: The NeXus Definition Language 87

http://trac.nexusformat.org/definitions/browser/trunk
http://download.nexusformat.org/doxygen/html-java/

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

Schema) for NXDL files may also be viewed from this URL. See the files nxdl.xsd for the main XML
Schema and nxdlTypes.xsd for the listings of allowed data types and categories of units allowed in
NXDL files.

NXDL files can be checked (validated) for syntax and content. With validation, scientists can be certain
their definitions will be free of syntax errors. Since NXDL is based on the XML standard, there are many
editing programs 2 available to ensure that the files are well-formed. 3 There are many standard tools such
as xmllint and xsltproc that can process XML files. Further, NXDL files are backed by a set of rules
(an XML Schema) that define the language and can be used to check that an NXDL file is both correct by
syntax and valid by the NeXus rules.

NXDL files are machine-readable. This enables their automated conversion into schema files that can be
used, in combination with other NXDL files, to validate NeXus data files. In fact, all of the tables in the
Class Definitions (page 90) Chapter have been generated directly from the NXDL files.

The language of NXDL files is intentionally quite small, to provide only that which is necessary to describe
scientific data structures (or to establish the necessary XML structures). Rather than have scientists prepare
XML Schema files directly, NXDL was designed to reduce the jargon necessary to define the structure
of data files. The two principle objects in NXDL files are: group and field. Documentation (doc)
is optional for any NXDL component. Either of these objects may have additional attributes that
contribute simple metadata.

The Class Definitions (page 90) Chapter lists the various classes from which a NeXus file is constructed.
These classes provide the glossary of items that could, in principle, be stored in a standard-conforming
NeXus file (other items may be inserted into the file if the author wishes, but they won’t be part of the
standard). If you are going to include a particular piece of metadata, refer to the class definitions for the
standard nomenclature. However, to assist those writing data analysis software, it is useful to provide more
than a glossary; it is important to define the required contents of NeXus files that contain data from particular
classes of neutron, X-ray, or muon instrument.

3.2.2 Data Types allowed in NXDL specifications

Data Types for use in NXDL specifications describe the expected type of data for a NeXus field. These
terms are very broad. More specific terms are used in actual NeXus data files that describe size and array
dimensions. In addition to the types in the following table, the NAPI type is defined when one wishes to
permit a field with any of these data types.

3.2.3 Unit Categories allowed in NXDL specifications

Unit categories in NXDL specifications describe the expected type of units for a NeXus field. They should
describe valid units consistent with the section on NeXus units (page 41) in Volume I. The values for unit
categories are restricted (by an enumeration) to the following table.

2 For example XML Copy Editor:xml-copy-editor.sourceforge.net
3 http://en.wikipedia.org/wiki/XML#Well-formedness_and_error-handling

88 Chapter 3. NeXus: Reference Documentation

http://en.wikipedia.org/wiki/XML#Well-formedness_and_error-handling

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

3.2.4 Historical notes about the Development of NXDL

This section contains a few brief notes about the history of NXDL and the motivations for its creation.

Previously, the structure of NeXus data files was described using Meta-DTD, an XML format that provided
a compact description. The terse format was not obvious to all and was difficult to machine-process. NXDL
was conceived to be a simpler syntax than Meta-DTD. The switch to NXDL was not intended to change
what was in the data files, just to provide an easier (and more generic) way of describing data files.

The NeXus Design page lists the group classes from which a NeXus file is constructed. They provide the
glossary of items that could, in principle, be stored in a standard-conforming NeXus file (other items may be
inserted into the file if the author wishes, but they won’t be part of the standard). When planning to include
a particular piece of metadata, consult the class definitions to find out what to call it. However, to assist
those writing data analysis software, it is useful to provide more than a glossary; it is important to define
the required contents of NeXus files that contain data from particular classes of neutron, x-ray, or muon
instrument.

As part of the NeXus standard, the NIAC identified a number of generic instruments that describe an ap-
preciable number of existing instruments around the world. Although not identical in every detail, they
share many common characteristics, and more importantly, they require sufficiently similar modes of data
analysis, enough to make a standard description useful. Many of the application definitions were built from
these instrument definitions using the NeXus Definition Language (NXDL) format.

Class definitions in NeXus prior to 2008 had been in the form of base classes and instrument definitions. All
of these were in the same category. As the development of NeXus had been led mostly by scientists from
neutron sources, this represented their typical situations.

Both those new to NeXus and also those familiar saw the previous emphasis on instrument definitions as
a deficiency that limited flexibility and possibly usage. The point was made that NeXus should attempt to
describe better reduced data and also data for analysis since synchrotron instruments are rarely adhering to
a fixed definition.

The design of NeXus is moving towards an object-oriented approach where the base classes will be the
objects and the application definitions will use the objects to specify the required components as fits some
application. Here, application is very loosely defined to include:

• specification of a scientific instrument (example: TOF-USANS at SNS)

• specification of what is expected for a scientific technique (example: small-angle scattering data for
common analysis programs)

• specification of generic data acquisition stream (example: TOFRAW - raw time-of-flight data from a
pulsed neutron source)

• specification of input or output of a specific software program

The point of the NeXus Application Definition is that all of these start with NX and all have been approved
by the NIAC.

Those NXDL specifications not yet approved by the NIAC fall into the category of NeXus contributed
definitions for which NeXus has a place in the repository. Consider the NXDL files in the contributed
directory as in incubation. This category is the place to put an NXDL (a candidate for a base class or
application definition) for the NIAC to consider approving.

3.2. NXDL: The NeXus Definition Language 89

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

3.3 NeXus classes

Information is stored in a NeXus data file by grouping together similar parts. For example, information
about the sample could include a descriptive name, the temperature, and other items. NeXus specifies the
contents of these groupings using classes. In some parts of this manual, these classes might be called group
type or some similar term. In this section, the NeXus classes are described in detail. Each class is specified
using the NeXus Definition Language (NXDL). The rules and structure of NXDL are described in a separate
chapter.

There are three types of NeXus class file: base classes, application definitions, and contributed definitions.
Base class definitions define the complete set of terms that might be used in an instance of that class. Appli-
cation definitions define the minimum set of terms that must be used in an instance of that class. Contributed
definitions include propositions from the community for NeXus base classes or application definitions, as
well as other NXDL files for long-term archival by NeXus.

3.3.1 Overview of NeXus classes

Each of the NeXus classes is described in two basic ways. First, a short list of descriptive information is
provided as a header, then a condensed listing of the basic structure, then a table providing documentation
for the various components of the NeXus class.

category The category of NXDL, either: + base (base class) + application (application
definition) + contributed (contributed definition)

NXDL source Name of the NeXus class and a URL to the source listing in the NeXus subver-
sion repository.

version A string that documents this particular version of this NXDL.

SVN Id Subversion repository checkout identification, stripped of the surrounding dollar signs.
(The Id is blank on files copied direct from the repository that are not checked out by a
subversion client.)

NeXus Definition Language The NeXus Definition Language (page 87) (NXDL) (described
in NXDL) is used to describe the components in the NeXus Base Classes, as well as
application and contributed definitions. The intent of NXDL is to provide a rules-based
method for defining a NeXus data file that is specific to either an instrument (where NeXus

90 Chapter 3. NeXus: Reference Documentation

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

has been for years) or an area of scientific technique or analysis. NXDL replaces the meta-
DTD method used previously to define the NeXus base classes.

extends class NeXus class extended by this class. Most NeXus base classes only extend the
base class definition (NXDL).

other classes included List (including URLs) of other classes used to define this class.

symbol list List of the symbols (if present) that define mnemonics that represent the length
of each dimension in a vector or array.

documentation Description of the NeXus class. DocBook markup (formatting is allowed).

Basic structure of the class‘

A compact listing of the basic structure (groups, fields, dimensions, attributes, and links) is prepared for
each NXDL specification. Indentation shows nested structure. Attributes are prepended with the @ symbol
while links use the characters --> to represent the path to the intended source of the information.

The table has columns to describe the basic information about each field or group in the class. An example
of the varieties of specifications are given in the following table using items found in various NeXus base
classes.

Name Type Units Description (and Occurrences)
program_name NX_CHAR Name of program used to generate this file
@version NX_CHAR Program version number

Occurences: 1 : default
@configuration NX_CHAR configuration of the program
thumbnail NXnote A small image that is representative of the

entry. An example of this is a 640x480 JPEG
image automatically produced by a low
resolution plot of the NXdata.

@mime_type NX_CHAR expected: mime_type=”image/*”
NXgeometry describe the geometry of this class

distance NX_FLOAT NX_LENGTH Distance from sample
mode “Single

Bunch” |
“Multi
Bunch”

source operating mode

target_material Ta | W |
depleted_U |
enriched_U |
Hg | Pb | C

Pulsed source target material

In the above example, the fields might appear in a NeXus XML data file as

3.3. NeXus classes 91

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

Example fragment of a NeXus XML data file

1 <program_name version="1.0a" configuration="standard">
2 MaxSAS
3 </program_name>
4 <NXnote name="thumbnail" mime_type="image/*">
5 <!-- contents of an NXnote would appear here -->
6 </NXnote>
7 <distance units="mm">125.6</distance>
8 <mode> Single Bunch </mode>
9 <target_material>depleted_U</target_material>

The columns in the table are described as follows:

Name (and attributes) Name of the data field. Since name needs to be restricted to valid
program variable names, no “-” characters can be allowed. Name must satisfy both HDF
and XML naming.

1 NameStartChar ::= _ | a..z | A..Z
2 NameChar ::= NameStartChar | 0..9
3 Name ::= NameStartChar (NameChar)*
4

5 Or, as a regular expression: [_a-zA-Z][_a-zA-Z0-9]*
6 equivalent regular expression: [_a-zA-Z][\w_]*

Attributes, identified with a leading “at” symbol (@) and belong with the preceding
field or group, are additional metadata used to define this field or group. In the ex-
ample above, the program_name element has two attributes: version (required)
and configuration (optional) while the thumbnail element has one attribute:
mime_type (optional).

Type Type of data to be represented by this variable. The type is one of those specified in
the NeXus Definition Language (page 87) (see NXDL). In the case where the variable
can take only one value from a known list, the list of known values is presented, such as
in the target_material field above: Ta | W | depleted_U | enriched_U
| Hg | Pb | C. Selections with included whitespace are surrounded by quotes. See
the example above for usage.

Units Data units, given as character strings, must conform to the NeXus units standard. See
the “NeXus units” (page 41) section for details.

Description (and Occurrences) A simple text description of the data field. No markup or for-
matting is allowed. The absence of Occurrences in the item description signifies that both
minOccurs and maxOccurs have the default values. If the number of occurrences of
an item are specified in the NXDL (through @minOccurs and @maxOccurs attributes),
they will be reported in the Description column similar to the example shown above.
Default values for occurrences are shown in the following table. The NXDL element
type is either a group (such as a NeXus base class), a field (that specifies the name and
type of a variable), or an attribute of a field or group. The number of times an item can
appear ranges between minOccurs and maxOccurs. A default minOccurs of zero
means the item is optional. For attributes, maxOccurs cannot be greater than 1.

92 Chapter 3. NeXus: Reference Documentation

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

NXDL element type minOccurs maxOccurs
group 0 unbounded
field 0 unbounded
attribute 0 1

3.4 Examples of writing and reading NeXus data files

Simple examples of reading and writing NeXus data files are provided in the NeXus Introduction (page 7)
chapter of Volume I and also in the NAPI: NeXus Application Programmer Interface (page 81) chapter of
Volume II. Here, three examples are provided showing how to write a NeXus data file without using the
NAPI.

3.4.1 Code Examples that use the NAPI

Various examples are given that show how to read and write NeXus data files using the NAPI: NeXus
Application Programmer Interface (page 81).

Example NeXus programs using NAPI

NAPI Simple 2-D Write Example (C, F77, F90)

Code examples are provided in this section that write 2-D data to a NeXus HDF5 file in C, F77, and F90
languages using the NAPI.

The following code reads a two-dimensional set counts with dimension scales of t and phi using local
routines, and then writes a NeXus file containing a single NXentry group and a single NXdata group.
This is the simplest data file that conforms to the NeXus standard. The same code is provided in C, F77, and
F90 versions. Compare these code examples with native-HDF5-Examples.

NAPI C Example: write simple NeXus file

3.4. Examples of writing and reading NeXus data files 93

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

1 /* $Id: napi-example.c 1091 2012-05-28 21:10:09Z Pete Jemian $ */
2

3 #include "napi.h"
4

5 int main()
6 {
7 int counts[50][1000], n_t=1000, n_p=50, dims[2], i;
8 float t[1000], phi[50];
9 NXhandle file_id;

10 /*
11 * Read in data using local routines to populate phi and counts
12 *
13 * for example you may create a getdata() function and call
14 *
15 * getdata (n_t, t, n_p, phi, counts);
16 */
17 /* Open output file and output global attributes */
18 NXopen ("NXfile.nxs", NXACC_CREATE5, &file_id);
19 NXputattr (file_id, "user_name", "Joe Bloggs", 10, NX_CHAR);
20 /* Open top-level NXentry group */
21 NXmakegroup (file_id, "Entry1", "NXentry");
22 NXopengroup (file_id, "Entry1", "NXentry");
23 /* Open NXdata group within NXentry group */
24 NXmakegroup (file_id, "Data1", "NXdata");
25 NXopengroup (file_id, "Data1", "NXdata");
26 /* Output time channels */
27 NXmakedata (file_id, "time_of_flight", NX_FLOAT32, 1, &n_t);
28 NXopendata (file_id, "time_of_flight");
29 NXputdata (file_id, t);
30 NXputattr (file_id, "units", "microseconds", 12, NX_CHAR);
31 NXclosedata (file_id);
32 /* Output detector angles */
33 NXmakedata (file_id, "polar_angle", NX_FLOAT32, 1, &n_p);
34 NXopendata (file_id, "polar_angle");
35 NXputdata (file_id, phi);
36 NXputattr (file_id, "units", "degrees", 7, NX_CHAR);
37 NXclosedata (file_id);
38 /* Output data */
39 dims[0] = n_t;
40 dims[1] = n_p;
41 NXmakedata (file_id, "counts", NX_INT32, 2, dims);
42 NXopendata (file_id, "counts");
43 NXputdata (file_id, counts);
44 i = 1;
45 NXputattr (file_id, "signal", &i, 1, NX_INT32);
46 NXputattr (file_id, "axes", "polar_angle:time_of_flight", 26, NX_CHAR);
47 NXclosedata (file_id);
48 /* Close NXentry and NXdata groups and close file */
49 NXclosegroup (file_id);
50 NXclosegroup (file_id);
51 NXclose (&file_id);
52 return;
53 }

94 Chapter 3. NeXus: Reference Documentation

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

NAPI F77 Example: write simple NeXus file

Note: The F77 interface is no longer being developed.

1 ! $Id: napi-example.f77 552 2010-04-19 22:24:42Z Pete Jemian $
2

3 program WRITEDATA
4

5 include ’NAPIF.INC’
6 integer*4 status, file_id(NXHANDLESIZE), counts(1000,50), n_p, n_t, dims(2)
7 real*4 t(1000), phi(50)
8

9 !Read in data using local routines
10 call getdata (n_t, t, n_p, phi, counts)
11 !Open output file
12 status = NXopen (’NXFILE.NXS’, NXACC_CREATE, file_id)
13 status = NXputcharattr
14 + (file_id, ’user’, ’Joe Bloggs’, 10, NX_CHAR)
15 !Open top-level NXentry group
16 status = NXmakegroup (file_id, ’Entry1’, ’NXentry’)
17 status = NXopengroup (file_id, ’Entry1’, ’NXentry’)
18 !Open NXdata group within NXentry group
19 status = NXmakegroup (file_id, ’Data1’, ’NXdata’)
20 status = NXopengroup (file_id, ’Data1’, ’NXdata’)
21 !Output time channels
22 status = NXmakedata
23 + (file_id, ’time_of_flight’, NX_FLOAT32, 1, n_t)
24 status = NXopendata (file_id, ’time_of_flight’)
25 status = NXputdata (file_id, t)
26 status = NXputcharattr
27 + (file_id, ’units’, ’microseconds’, 12, NX_CHAR)
28 status = NXclosedata (file_id)
29 !Output detector angles
30 status = NXmakedata (file_id, ’polar_angle’, NX_FLOAT32, 1, n_p)
31 status = NXopendata (file_id, ’polar_angle’)
32 status = NXputdata (file_id, phi)
33 status = NXputcharattr (file_id, ’units’, ’degrees’, 7, NX_CHAR)
34 status = NXclosedata (file_id)
35 !Output data
36 dims(1) = n_t
37 dims(2) = n_p
38 status = NXmakedata (file_id, ’counts’, NX_INT32, 2, dims)
39 status = NXopendata (file_id, ’counts’)
40 status = NXputdata (file_id, counts)
41 status = NXputattr (file_id, ’signal’, 1, 1, NX_INT32)
42 status = NXputattr
43 + (file_id, ’axes’, ’polar_angle:time_of_flight’, 26, NX_CHAR)
44 status = NXclosedata (file_id)
45 !Close NXdata and NXentry groups and close file
46 status = NXclosegroup (file_id)
47 status = NXclosegroup (file_id)
48 status = NXclose (file_id)
49

3.4. Examples of writing and reading NeXus data files 95

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

50 stop
51 end

NAPI F90 Example: write simple NeXus file
1 ! $Id: napi-example.f90 552 2010-04-19 22:24:42Z Pete Jemian $
2

3 program WRITEDATA
4

5 use NXUmodule
6

7 type(NXhandle) :: file_id
8 integer, pointer :: counts(:,:)
9 real, pointer :: t(:), phi(:)

10

11 !Use local routines to allocate pointers and fill in data
12 call getlocaldata (t, phi, counts)
13 !Open output file
14 if (NXopen ("NXfile.nxs", NXACC_CREATE, file_id) /= NX_OK) stop
15 if (NXUwriteglobals (file_id, user="Joe Bloggs") /= NX_OK) stop
16 !Set compression parameters
17 if (NXUsetcompress (file_id, NX_COMP_LZW, 1000) /= NX_OK) stop
18 !Open top-level NXentry group
19 if (NXUwritegroup (file_id, "Entry1", "NXentry") /= NX_OK) stop
20 !Open NXdata group within NXentry group
21 if (NXUwritegroup (file_id, "Data1", "NXdata") /= NX_OK) stop
22 !Output time channels
23 if (NXUwritedata (file_id, "time_of_flight", t, "microseconds") /= NX_OK) stop
24 !Output detector angles
25 if (NXUwritedata (file_id, "polar_angle", phi, "degrees") /= NX_OK) stop
26 !Output data
27 if (NXUwritedata (file_id, "counts", counts, "counts") /= NX_OK) stop
28 if (NXputattr (file_id, "signal", 1) /= NX_OK) stop
29 if (NXputattr (file_id, "axes", "polar_angle:time_of_flight") /= NX_OK) stop
30 !Close NXdata group
31 if (NXclosegroup (file_id) /= NX_OK) stop
32 !Close NXentry group
33 if (NXclosegroup (file_id) /= NX_OK) stop
34 !Close NeXus file
35 if (NXclose (file_id) /= NX_OK) stop
36

37 end program WRITEDATA

NAPI Python Simple 3-D Write Example

A single code example is provided in this section that writes 3-D data to a NeXus HDF5 file in the Python
language using the NAPI. The data file may be retrieved from the repository of NeXus data file examples:

data http://svn.nexusformat.org/definitions/exampledata/simple3D.h5

The data to be written to the file is a simple three-dimensional array (2 x 3 x 4) of integers. The single
dataset is intended to demonstrate the order in which each value of the array is stored in a NeXus HDF5 data

96 Chapter 3. NeXus: Reference Documentation

http://svn.nexusformat.org/definitions/exampledata/simple3D.h5

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

file.

NAPI Python Example: write simple NeXus file
1 #!/usr/bin/python
2

3 import sys
4 import nxs
5 import numpy
6

7 nf = nxs.open("simple3D.h5", "w5")
8

9 nf.makegroup("entry","NXentry")
10 nf.opengroup("entry","NXentry")
11

12 nf.makegroup("data","NXdata")
13 nf.opengroup("data","NXdata")
14

15 a = numpy.zeros((2,3,4),dtype=numpy.int)
16 val = 0
17 for i in range(2):
18 for j in range(3):
19 for k in range(4):
20 a[i,j,k] = val
21 val = val + 1
22

23 nf.makedata("test",’int32’,[2,3,4])
24 nf.opendata("test")
25 nf.putdata(a)
26 nf.putattr("signal",1)
27 nf.closedata()
28

29 nf.closegroup() # NXdata
30 nf.closegroup() # NXentry
31

32 nf.close()
33

34 exit

View a NeXus HDF5 file using h5dump

For the purposes of an example, it is instructive to view the content of the NeXus HDF5 file produced by
the above program. Since HDF5 is a binary file format, we cannot show the contents of the file directly in
this manual. Instead, we first we view the content by showing the output from the h5dump tool provided as
part of the HDF5 tool kit: h5dump simple3D.h5

NAPI Python Example: h5dump output of NeXus HDF5 file
1 HDF5 "simple3D.h5" {
2 GROUP "/" {
3 ATTRIBUTE "NeXus_version" {

3.4. Examples of writing and reading NeXus data files 97

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

4 DATATYPE H5T_STRING {
5 STRSIZE 5;
6 STRPAD H5T_STR_NULLTERM;
7 CSET H5T_CSET_ASCII;
8 CTYPE H5T_C_S1;
9 }

10 DATASPACE SCALAR
11 DATA {
12 (0): "4.1.0"
13 }
14 }
15 ATTRIBUTE "file_name" {
16 DATATYPE H5T_STRING {
17 STRSIZE 11;
18 STRPAD H5T_STR_NULLTERM;
19 CSET H5T_CSET_ASCII;
20 CTYPE H5T_C_S1;
21 }
22 DATASPACE SCALAR
23 DATA {
24 (0): "simple3D.h5"
25 }
26 }
27 ATTRIBUTE "HDF5_Version" {
28 DATATYPE H5T_STRING {
29 STRSIZE 5;
30 STRPAD H5T_STR_NULLTERM;
31 CSET H5T_CSET_ASCII;
32 CTYPE H5T_C_S1;
33 }
34 DATASPACE SCALAR
35 DATA {
36 (0): "1.6.6"
37 }
38 }
39 ATTRIBUTE "file_time" {
40 DATATYPE H5T_STRING {
41 STRSIZE 24;
42 STRPAD H5T_STR_NULLTERM;
43 CSET H5T_CSET_ASCII;
44 CTYPE H5T_C_S1;
45 }
46 DATASPACE SCALAR
47 DATA {
48 (0): "2011-11-18 17:26:27+0100"
49 }
50 }
51 GROUP "entry" {
52 ATTRIBUTE "NX_class" {
53 DATATYPE H5T_STRING {
54 STRSIZE 7;
55 STRPAD H5T_STR_NULLTERM;
56 CSET H5T_CSET_ASCII;

98 Chapter 3. NeXus: Reference Documentation

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

57 CTYPE H5T_C_S1;
58 }
59 DATASPACE SCALAR
60 DATA {
61 (0): "NXentry"
62 }
63 }
64 GROUP "data" {
65 ATTRIBUTE "NX_class" {
66 DATATYPE H5T_STRING {
67 STRSIZE 6;
68 STRPAD H5T_STR_NULLTERM;
69 CSET H5T_CSET_ASCII;
70 CTYPE H5T_C_S1;
71 }
72 DATASPACE SCALAR
73 DATA {
74 (0): "NXdata"
75 }
76 }
77 DATASET "test" {
78 DATATYPE H5T_STD_I32LE
79 DATASPACE SIMPLE { (2, 3, 4) / (2, 3, 4) }
80 DATA {
81 (0,0,0): 0, 1, 2, 3,
82 (0,1,0): 4, 5, 6, 7,
83 (0,2,0): 8, 9, 10, 11,
84 (1,0,0): 12, 13, 14, 15,
85 (1,1,0): 16, 17, 18, 19,
86 (1,2,0): 20, 21, 22, 23
87 }
88 ATTRIBUTE "signal" {
89 DATATYPE H5T_STD_I32LE
90 DATASPACE SCALAR
91 DATA {
92 (0): 1
93 }
94 }
95 }
96 }
97 }
98 }
99 }

View a NeXus HDF5 file using h5toText.py

The output of h5dump contains a lot of structural information about the HDF5 file that can distract us
from the actual content we added to the file. Next, we show the output from a custom Python tool
(h5toText.py) that we describe in a later section (h5toText support module (page 123)) of this chap-
ter. This tool was developed to show the actual data content of an HDF5 file that we create.

3.4. Examples of writing and reading NeXus data files 99

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

NAPI Python Example: h5toText output of NeXus HDF5 file
1 simple3D.h5:NeXus data file
2 @NeXus_version = 4.1.0
3 @file_name = simple3D.h5
4 @HDF5_Version = 1.6.6
5 @file_time = 2011-11-18 17:26:27+0100
6 entry:NXentry
7 @NX_class = NXentry
8 data:NXdata
9 @NX_class = NXdata

10 test:NX_INT32[2,3,4] = __array
11 @signal = 1
12 __array = [
13 [
14 [0, 1, 2, 3]
15 [4, 5, 6, 7]
16 [8, 9, 10, 11]
17]
18 [
19 [12, 13, 14, 15]
20 [16, 17, 18, 19]
21 [20, 21, 22, 23]
22]
23]

3.4.2 Code Examples that do not use the NAPI

Sometimes, for whatever reason, it is necessary to write or read NeXus files without using the routines
provided by the NAPI: NeXus Application Programmer Interface (page 81). Each example in this section is
written to support just one of the low-level file formats supported by NeXus (HDF4, HDF5, or XML).

Example NeXus C programs using native HDF5 commands

C-language code examples are provided for writing and reading NeXus-compliant files using the native
HDF5 interfaces. These examples are derived from the simple NAPI examples for writing and reading
given in the Introduction (page 7) chapter. Compare these code examples with NAPI-Examples.

Writing a simple NeXus file using native HDF5 commands in C

1 /**
2 * This is an example how to write a valid NeXus file
3 * using the HDF-5 API alone. Ths structure which is
4 * going to be created is:
5 *
6 * scan:NXentry
7 * data:NXdata
8 * counts[]
9 * @signal=1

100 Chapter 3. NeXus: Reference Documentation

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

10 * two_theta[]
11 * @units=degrees
12 *
13 * WARNING: each of the HDF function below needs to be
14 * wrapped into something like:
15 *
16 * if((hdfid = H5function(...)) < 0){
17 * handle error gracefully
18 * }
19 * I left the error checking out in order to keep the
20 * code clearer
21 *
22 * This also installs a link from /scan/data/two_theta to /scan/hugo
23 *
24 * Mark Koennecke, October 2011
25 */
26 #include <hdf5.h>
27 #include <stdlib.h>
28 #include <string.h>
29

30 #define LENGTH 400
31 int main(int argc, char *argv[])
32 {
33 float two_theta[LENGTH];
34 int counts[LENGTH], i, rank, signal;
35

36 /* HDF-5 handles */
37 hid_t fid, fapl, gid, atts, atttype, attid;
38 hid_t datatype, dataspace, dataprop, dataid;
39 hsize_t dim[1], maxdim[1];
40

41

42 /* create some data: nothing NeXus or HDF-5 specific */
43 for(i = 0; i < LENGTH; i++){
44 two_theta[i] = 10. + .1*i;
45 counts[i] = (int)(1000 * ((float)random()/(float)RAND_MAX));
46 }
47 dim[0] = LENGTH;
48 maxdim[0] = LENGTH;
49 rank = 1;
50

51

52

53 /*
54 * open the file. The file attribute forces normal file
55 * closing behaviour down HDF-5 ’ s throat
56 */
57 fapl = H5Pcreate(H5P_FILE_ACCESS);
58 H5Pset_fclose_degree(fapl,H5F_CLOSE_STRONG);
59 fid = H5Fcreate("NXfile.h5", H5F_ACC_TRUNC, H5P_DEFAULT,fapl);
60 H5Pclose(fapl);
61

62

3.4. Examples of writing and reading NeXus data files 101

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

63 /*
64 * create scan:NXentry
65 */
66 gid = H5Gcreate(fid, (const char *)"scan",0);
67 /*
68 * store the NX_class attribute. Notice that you
69 * have to take care to close those hids after use
70 */
71 atts = H5Screate(H5S_SCALAR);
72 atttype = H5Tcopy(H5T_C_S1);
73 H5Tset_size(atttype, strlen("NXentry"));
74 attid = H5Acreate(gid,"NX_class", atttype, atts, H5P_DEFAULT);
75 H5Awrite(attid, atttype, (char *)"NXentry");
76 H5Sclose(atts);
77 H5Tclose(atttype);
78 H5Aclose(attid);
79

80 /*
81 * same thing for data:Nxdata in scan:NXentry.
82 * A subroutine would be nice to have here.......
83 */
84 gid = H5Gcreate(fid, (const char *)"/scan/data",0);
85 atts = H5Screate(H5S_SCALAR);
86 atttype = H5Tcopy(H5T_C_S1);
87 H5Tset_size(atttype, strlen("NXdata"));
88 attid = H5Acreate(gid,"NX_class", atttype, atts, H5P_DEFAULT);
89 H5Awrite(attid, atttype, (char *)"NXdata");
90 H5Sclose(atts);
91 H5Tclose(atttype);
92 H5Aclose(attid);
93

94 /*
95 * store the counts dataset
96 */
97 dataspace = H5Screate_simple(rank,dim,maxdim);
98 datatype = H5Tcopy(H5T_NATIVE_INT);
99 dataprop = H5Pcreate(H5P_DATASET_CREATE);

100 dataid = H5Dcreate(gid,(char *)"counts",datatype,dataspace,dataprop);
101 H5Dwrite(dataid, datatype, H5S_ALL, H5S_ALL, H5P_DEFAULT, counts);
102 H5Sclose(dataspace);
103 H5Tclose(datatype);
104 H5Pclose(dataprop);
105 /*
106 * set the signal=1 attribute
107 */
108 atts = H5Screate(H5S_SCALAR);
109 atttype = H5Tcopy(H5T_NATIVE_INT);
110 H5Tset_size(atttype,1);
111 attid = H5Acreate(dataid,"signal", atttype, atts, H5P_DEFAULT);
112 signal = 1;
113 H5Awrite(attid, atttype, &signal);
114 H5Sclose(atts);
115 H5Tclose(atttype);

102 Chapter 3. NeXus: Reference Documentation

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

116 H5Aclose(attid);
117

118 H5Dclose(dataid);
119

120 /*
121 * store the two_theta dataset
122 */
123 dataspace = H5Screate_simple(rank,dim,maxdim);
124 datatype = H5Tcopy(H5T_NATIVE_FLOAT);
125 dataprop = H5Pcreate(H5P_DATASET_CREATE);
126 dataid = H5Dcreate(gid,(char *)"two_theta",datatype,dataspace,dataprop);
127 H5Dwrite(dataid, datatype, H5S_ALL, H5S_ALL, H5P_DEFAULT, two_theta);
128 H5Sclose(dataspace);
129 H5Tclose(datatype);
130 H5Pclose(dataprop);
131

132 /*
133 * set the units attribute
134 */
135 atttype = H5Tcopy(H5T_C_S1);
136 H5Tset_size(atttype, strlen("degrees"));
137 atts = H5Screate(H5S_SCALAR);
138 attid = H5Acreate(dataid,"units", atttype, atts, H5P_DEFAULT);
139 H5Awrite(attid, atttype, (char *)"degrees");
140 H5Sclose(atts);
141 H5Tclose(atttype);
142 H5Aclose(attid);
143 /*
144 * set the target attribute for linking
145 */
146 atttype = H5Tcopy(H5T_C_S1);
147 H5Tset_size(atttype, strlen("/scan/data/two_theta"));
148 atts = H5Screate(H5S_SCALAR);
149 attid = H5Acreate(dataid,"target", atttype, atts, H5P_DEFAULT);
150 H5Awrite(attid, atttype, (char *)"/scan/data/two_theta");
151 H5Sclose(atts);
152 H5Tclose(atttype);
153 H5Aclose(attid);
154

155

156 H5Dclose(dataid);
157

158 /*
159 * make a link in /scan to /scan/data/two_theta, thereby
160 * renaming two_theta to hugo
161 */
162 H5Glink(fid,H5G_LINK_HARD,"/scan/data/two_theta","/scan/hugo");
163

164 /*
165 * close the file
166 */
167 H5Fclose(fid);
168 }

3.4. Examples of writing and reading NeXus data files 103

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

Reading a simple NeXus file using native HDF5 commands in C

1 /**
2 * Reading example for reading NeXus files with plain
3 * HDF-5 API calls. This reads out counts and two_theta
4 * out of the file generated by nxh5write.
5 *
6 * WARNING: I left out all error checking in this example.
7 * In production code you have to take care of those errors
8 *
9 * Mark Koennecke, October 2011

10 */
11 #include <hdf5.h>
12 #include <stdlib.h>
13

14 int main(int argc, char *argv[])
15 {
16 float *two_theta = NULL;
17 int *counts = NULL, rank, i;
18 hid_t fid, dataid, fapl;
19 hsize_t *dim = NULL;
20 hid_t datatype, dataspace, memdataspace;
21

22 /*
23 * Open file, thereby enforcing proper file close
24 * semantics
25 */
26 fapl = H5Pcreate(H5P_FILE_ACCESS);
27 H5Pset_fclose_degree(fapl,H5F_CLOSE_STRONG);
28 fid = H5Fopen("NXfile.h5", H5F_ACC_RDONLY,fapl);
29 H5Pclose(fapl);
30

31 /*
32 * open and read the counts dataset
33 */
34 dataid = H5Dopen(fid,"/scan/data/counts");
35 dataspace = H5Dget_space(dataid);
36 rank = H5Sget_simple_extent_ndims(dataspace);
37 dim = malloc(rank*sizeof(hsize_t));
38 H5Sget_simple_extent_dims(dataspace, dim, NULL);
39 counts = malloc(dim[0]*sizeof(int));
40 memdataspace = H5Tcopy(H5T_NATIVE_INT32);
41 H5Dread(dataid,memdataspace,H5S_ALL, H5S_ALL,H5P_DEFAULT, counts);
42 H5Dclose(dataid);
43 H5Sclose(dataspace);
44 H5Tclose(memdataspace);
45

46 /*
47 * open and read the two_theta data set
48 */
49 dataid = H5Dopen(fid,"/scan/data/two_theta");
50 dataspace = H5Dget_space(dataid);
51 rank = H5Sget_simple_extent_ndims(dataspace);

104 Chapter 3. NeXus: Reference Documentation

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

52 dim = malloc(rank*sizeof(hsize_t));
53 H5Sget_simple_extent_dims(dataspace, dim, NULL);
54 two_theta = malloc(dim[0]*sizeof(float));
55 memdataspace = H5Tcopy(H5T_NATIVE_FLOAT);
56 H5Dread(dataid,memdataspace,H5S_ALL, H5S_ALL,H5P_DEFAULT, two_theta);
57 H5Dclose(dataid);
58 H5Sclose(dataspace);
59 H5Tclose(memdataspace);
60

61

62

63 H5Fclose(fid);
64

65 for(i = 0; i < dim[0]; i++){
66 printf("%8.2f %10d\n", two_theta[i], counts[i]);
67 }
68

69 }

Python Examples using h5py

One way to gain a quick familiarity with NeXus is to start working with some data. For at least the first
few examples in this section, we have a simple two-column set of 1-D data, collected as part of a series of
alignment scans by the APS USAXS instrument during the time it was stationed at beam line 32ID. We will
show how to write this data using the Python language and the h5py package 4 (using h5py calls directly
rather than using the NeXus NAPI). The actual data to be written was extracted (elsewhere) from a spec
5 data file and read as a text block from a file by the Python source code. Our examples will start with the
simplest case and add only mild complexity with each new case since these examples are meant for those
who are unfamiliar with NeXus.

The data shown in Example-H5py-Data will be written to the NeXus HDF5 file using the only two required
NeXus objects NXentry and NXdata in the first example and then minor variations on this structure in
the next two examples. The data model is identical to the one in the Introduction to Volume I (page 10))
except that the names will be different, as shown below:

Figure 3.1: data structure, (from Introduction)

4 h5py: http://code.google.com/p/h5py
5 SPEC: http://certif.com/spec.html

3.4. Examples of writing and reading NeXus data files 105

http://code.google.com/p/h5py
http://certif.com/spec.html

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

our h5py example

1 /entry:NXentry
2 /mr_scan:NXdata
3 /mr : float64[31]
4 /I00 : int32[31]

Figure 3.2: plot of our mr_scan

two-column data for our mr_scan

1 17.92608 1037
2 17.92591 1318
3 17.92575 1704
4 17.92558 2857
5 17.92541 4516
6 17.92525 9998
7 17.92508 23819
8 17.92491 31662
9 17.92475 40458

10 17.92458 49087
11 17.92441 56514
12 17.92425 63499
13 17.92408 66802
14 17.92391 66863
15 17.92375 66599
16 17.92358 66206
17 17.92341 65747
18 17.92325 65250
19 17.92308 64129

106 Chapter 3. NeXus: Reference Documentation

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

20 17.92291 63044
21 17.92275 60796
22 17.92258 56795
23 17.92241 51550
24 17.92225 43710
25 17.92208 29315
26 17.92191 19782
27 17.92175 12992
28 17.92158 6622
29 17.92141 4198
30 17.92125 2248
31 17.92108 1321

Writing the simplest data using h5py

These two examples show how to write the simplest data (above). One example writes the data directly to
the NXdata group while the other example writes the data to NXinstrument/NXdetector/data and
then creates a soft link to that data in NXdata.

h5py example writing the simplest NeXus data file In this example, the 1-D scan data will be written
into the simplest possible NeXus HDF5 data file, containing only the required NeXus components. NeXus
requires at least one NXentry group at the root level of an HDF5 file. The NXentry group contains all
the data and associated information that comprise a single measurement. NeXus also requires that each
NXentry group must contain at least one NXdata group. NXdata is used to describe the plottable data in
the NXentry group. The simplest place to store data in a NeXus file is directly in the NXdata group, as
shown in the next figure.

In the above figure, the data file (writer_1_3_h5py.hdf5) contains a hierarchy of items, starting
with an NXentry named entry. (The full HDF5 path reference, /entry in this case, is shown to the
right of each component in the data structure.) The next h5py code example will show how to build an
HDF5 data file with this structure. Starting with the numerical data described above, the only informa-
tion written to the file is the absolute minimum information NeXus requires. In this example, you can
see how the HDF5 file is created, how Data Groups (page 21) and datasets (Data Fields (page 22)) are
created, and how Data Attributes (page 22) are assigned. Note particularly the NX_class attribute on
each HDF5 group that describes which of the NeXus ClassDefinitions-Base is being used. When the next
Python program (writer_1_3_h5py.py) is run from the command line (and there are no problems), the
writer_1_3_h5py.hdf5 file is generated.

1 #!/usr/bin/env python
2 ’’’
3 Writes the simplest NeXus HDF5 file using h5py
4 according to the example from Figure 1.3
5 in the Introduction chapter
6 ’’’
7

8 import h5py
9 import numpy

10

11 INPUT_FILE = ’input.dat’

3.4. Examples of writing and reading NeXus data files 107

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

Figure 3.3: Simple Example

108 Chapter 3. NeXus: Reference Documentation

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

12 HDF5_FILE = ’writer_1_3_h5py.hdf5’
13

14 #---------------------------
15

16 tthData, countsData = numpy.loadtxt(INPUT_FILE).T
17

18 f = h5py.File(HDF5_FILE, "w") # create the HDF5 NeXus file
19 # since this is a simple example, no attributes are used at this point
20

21 nxentry = f.create_group(’Scan’)
22 nxentry.attrs["NX_class"] = ’NXentry’
23

24 nxdata = nxentry.create_group(’data’)
25 nxdata.attrs["NX_class"] = ’NXdata’
26

27 tth = nxdata.create_dataset("two_theta", data=tthData)
28 tth.attrs[’units’] = "degrees"
29

30 counts = nxdata.create_dataset("counts", data=countsData)
31 counts.attrs[’units’] = "counts"
32 counts.attrs[’signal’] = "1"
33 counts.attrs[’axes’] = "two_theta"
34

35 f.close() # be CERTAIN to close the file

We wish to make things a bit simpler for ourselves when creating the common structures we use in our
data files. To help, we gather together some of the common concepts such as create a file, create a NeXus
group, create a dataset and start to build a helper library. (See mylib support module (page 121) for more
details.) Here, we call it my_lib. Applying it to the simple example above, our code only becomes a
couple lines shorter! (Let’s hope the library starts to help in larger or more complicated projects.) Here’s
the revision that replaces direct calls to numpy and h5py with calls to our library. It generates the file
writer_1_3.hdf5.

1 #!/usr/bin/env python
2 ’’’
3 Writes the simplest NeXus HDF5 file using
4 a simple helper library with h5py and numpy calls
5 according to the example from Figure 1.3
6 in the Introduction chapter
7 ’’’
8

9 import my_lib
10

11 INPUT_FILE = ’input.dat’
12 HDF5_FILE = ’writer_1_3.hdf5’
13

14 #---------------------------
15

16 tthData, countsData = my_lib.get_2column_data(INPUT_FILE)
17

18 f = my_lib.makeFile(HDF5_FILE)
19 # since this is a simple example, no attributes are used at this point
20

3.4. Examples of writing and reading NeXus data files 109

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

21 nxentry = my_lib.makeGroup(f, ’Scan’, ’NXentry’)
22 nxdata = my_lib.makeGroup(nxentry, ’data’, ’NXdata’)
23

24 my_lib.makeDataset(nxdata, "two_theta", tthData, units=’degrees’)
25 my_lib.makeDataset(nxdata, "counts", countsData,
26 units=’counts’, signal=’1’, axes=’two_theta’)
27

28 f.close() # be CERTAIN to close the file

One of the tools provided with the HDF5 support libraries is the h5dump command, a command-line tool
to print out the contents of an HDF5 data file. With no better tool in place (the output is verbose), this is a
good tool to investigate what has been written to the HDF5 file. View this output from the command line
using h5dump writer_1_3.hdf5. Compare the data contents with the numbers shown above. Note
that the various HDF5 data types have all been decided by the h5py support package.

Note: The only difference between this file and one written using the NAPI is that the NAPI file will have
some additional, optional attributes set at the root level of the file that tells the original file name, time it was
written, and some version information about the software involved.

1 HDF5 "writer_1_3.hdf5" {
2 GROUP "/" {
3 GROUP "Scan" {
4 ATTRIBUTE "NX_class" {
5 DATATYPE H5T_STRING {
6 STRSIZE 7;
7 STRPAD H5T_STR_NULLPAD;
8 CSET H5T_CSET_ASCII;
9 CTYPE H5T_C_S1;

10 }
11 DATASPACE SCALAR
12 DATA {
13 (0): "NXentry"
14 }
15 }
16 GROUP "data" {
17 ATTRIBUTE "NX_class" {
18 DATATYPE H5T_STRING {
19 STRSIZE 6;
20 STRPAD H5T_STR_NULLPAD;
21 CSET H5T_CSET_ASCII;
22 CTYPE H5T_C_S1;
23 }
24 DATASPACE SCALAR
25 DATA {
26 (0): "NXdata"
27 }
28 }
29 DATASET "counts" {
30 DATATYPE H5T_STD_I32LE
31 DATASPACE SIMPLE { (31) / (31) }
32 DATA {

110 Chapter 3. NeXus: Reference Documentation

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

33 (0): 1037, 1318, 1704, 2857, 4516, 9998, 23819, 31662, 40458,
34 (9): 49087, 56514, 63499, 66802, 66863, 66599, 66206, 65747,
35 (17): 65250, 64129, 63044, 60796, 56795, 51550, 43710, 29315,
36 (25): 19782, 12992, 6622, 4198, 2248, 1321
37 }
38 ATTRIBUTE "units" {
39 DATATYPE H5T_STRING {
40 STRSIZE 6;
41 STRPAD H5T_STR_NULLPAD;
42 CSET H5T_CSET_ASCII;
43 CTYPE H5T_C_S1;
44 }
45 DATASPACE SCALAR
46 DATA {
47 (0): "counts"
48 }
49 }
50 ATTRIBUTE "signal" {
51 DATATYPE H5T_STRING {
52 STRSIZE 1;
53 STRPAD H5T_STR_NULLPAD;
54 CSET H5T_CSET_ASCII;
55 CTYPE H5T_C_S1;
56 }
57 DATASPACE SCALAR
58 DATA {
59 (0): "1"
60 }
61 }
62 ATTRIBUTE "axes" {
63 DATATYPE H5T_STRING {
64 STRSIZE 9;
65 STRPAD H5T_STR_NULLPAD;
66 CSET H5T_CSET_ASCII;
67 CTYPE H5T_C_S1;
68 }
69 DATASPACE SCALAR
70 DATA {
71 (0): "two_theta"
72 }
73 }
74 }
75 DATASET "two_theta" {
76 DATATYPE H5T_IEEE_F64LE
77 DATASPACE SIMPLE { (31) / (31) }
78 DATA {
79 (0): 17.9261, 17.9259, 17.9258, 17.9256, 17.9254, 17.9252,
80 (6): 17.9251, 17.9249, 17.9247, 17.9246, 17.9244, 17.9243,
81 (12): 17.9241, 17.9239, 17.9237, 17.9236, 17.9234, 17.9232,
82 (18): 17.9231, 17.9229, 17.9228, 17.9226, 17.9224, 17.9222,
83 (24): 17.9221, 17.9219, 17.9217, 17.9216, 17.9214, 17.9213,
84 (30): 17.9211
85 }

3.4. Examples of writing and reading NeXus data files 111

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

86 ATTRIBUTE "units" {
87 DATATYPE H5T_STRING {
88 STRSIZE 7;
89 STRPAD H5T_STR_NULLPAD;
90 CSET H5T_CSET_ASCII;
91 CTYPE H5T_C_S1;
92 }
93 DATASPACE SCALAR
94 DATA {
95 (0): "degrees"
96 }
97 }
98 }
99 }

100 }
101 }
102 }

Since the output of h5dump is verbose, a tool (see h5toText support module (page 123)) was created to print
out the structure of HDF5 data files. This tool provides a simplified view of the NeXus file. It is run with a
command like this: python h5toText.py h5dump writer_1_3.hdf5. Here is the output:

1 writer_1_3.hdf5:NeXus data file
2 Scan:NXentry
3 @NX_class = NXentry
4 data:NXdata
5 @NX_class = NXdata
6 counts:NX_INT32[31] = __array
7 @units = counts
8 @signal = 1
9 @axes = two_theta

10 __array = [1037, 1318, 1704, ’...’, 1321]
11 two_theta:NX_FLOAT64[31] = __array
12 @units = degrees
13 __array = [17.926079999999999, 17.925909999999998, 17.925750000000001, ’...’, 17.92108]

As the data files in these examples become more complex, you will appreciate the information density
provided by the h5toText.py tool.

h5py example writing a simple NeXus data file with links Building on the previous example, we wish
to identify our measured data with the detector on the instrument where it was generated. In this hypo-
thetical case, since the detector was positioned at some angle two_theta, we choose to store both datasets,
two_theta and counts, in a NeXus group. One appropriate NeXus group is NXdetector. This group
is placed in a NXinstrument group which is placed in a NXentry group. Still, NeXus requires a NXdata
group. Rather than duplicate the same data already placed in the detector group, we choose to link to those
datasets from the NXdata group. (Compare the next figure with Linking in a NeXus file (page 23) in the
NeXus Design (page 21) chapter of the NeXus User Manual.) The NeXus Design (page 21) chapter provides
a figure (Linking in a NeXus file (page 23)) with a small variation from our previous example, placing the
measured data within the /entry/instrument/detector group. Links are made from that data to
the /entry/data group.

112 Chapter 3. NeXus: Reference Documentation

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

Figure 3.4: h5py example showing linking in a NeXus file

The Python code to build an HDF5 data file with that structure (using numerical data from the previous
example) is shown below.

1 #!/usr/bin/env python
2 ’’’
3 Writes a simple NeXus HDF5 file using h5py with links
4 according to the example from Figure 2.1 in the Design chapter
5 ’’’
6

7 import my_lib
8

9 INPUT_FILE = ’input.dat’
10 HDF5_FILE = ’writer_2_1.hdf5’
11

12 #---------------------------
13

14 tthData, countsData = my_lib.get_2column_data(INPUT_FILE)
15

16 f = my_lib.makeFile(HDF5_FILE) # create the HDF5 NeXus file
17

18 nxentry = my_lib.makeGroup(f, ’entry’, ’NXentry’)
19 nxinstrument = my_lib.makeGroup(nxentry, ’instrument’, ’NXinstrument’)
20 nxdetector = my_lib.makeGroup(nxinstrument, ’detector’, ’NXdetector’)
21

22 tth = my_lib.makeDataset(nxdetector, "two_theta", tthData, units=’degrees’)
23 counts = my_lib.makeDataset(nxdetector, "counts", countsData,
24 units=’counts’, signal=’1’, axes=’two_theta’)
25

26 nxdata = my_lib.makeGroup(nxentry, ’data’, ’NXdata’)
27 my_lib.makeLink(nxdetector, tth, nxdata.name+’/two_theta’)
28 my_lib.makeLink(nxdetector, counts, nxdata.name+’/counts’)
29

30 f.close() # be CERTAIN to close the file

It is interesting to compare the output of the h5dump of the data file writer_2_1.hdf5 with our Python
instructions.

3.4. Examples of writing and reading NeXus data files 113

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

1 HDF5 "writer_2_1.hdf5" {
2 GROUP "/" {
3 GROUP "entry" {
4 ATTRIBUTE "NX_class" {
5 DATATYPE H5T_STRING {
6 STRSIZE 7;
7 STRPAD H5T_STR_NULLPAD;
8 CSET H5T_CSET_ASCII;
9 CTYPE H5T_C_S1;

10 }
11 DATASPACE SCALAR
12 DATA {
13 (0): "NXentry"
14 }
15 }
16 GROUP "data" {
17 ATTRIBUTE "NX_class" {
18 DATATYPE H5T_STRING {
19 STRSIZE 6;
20 STRPAD H5T_STR_NULLPAD;
21 CSET H5T_CSET_ASCII;
22 CTYPE H5T_C_S1;
23 }
24 DATASPACE SCALAR
25 DATA {
26 (0): "NXdata"
27 }
28 }
29 DATASET "counts" {
30 DATATYPE H5T_STD_I32LE
31 DATASPACE SIMPLE { (31) / (31) }
32 DATA {
33 (0): 1037, 1318, 1704, 2857, 4516, 9998, 23819, 31662, 40458,
34 (9): 49087, 56514, 63499, 66802, 66863, 66599, 66206, 65747,
35 (17): 65250, 64129, 63044, 60796, 56795, 51550, 43710, 29315,
36 (25): 19782, 12992, 6622, 4198, 2248, 1321
37 }
38 ATTRIBUTE "units" {
39 DATATYPE H5T_STRING {
40 STRSIZE 6;
41 STRPAD H5T_STR_NULLPAD;
42 CSET H5T_CSET_ASCII;
43 CTYPE H5T_C_S1;
44 }
45 DATASPACE SCALAR
46 DATA {
47 (0): "counts"
48 }
49 }
50 ATTRIBUTE "signal" {
51 DATATYPE H5T_STRING {
52 STRSIZE 1;
53 STRPAD H5T_STR_NULLPAD;

114 Chapter 3. NeXus: Reference Documentation

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

54 CSET H5T_CSET_ASCII;
55 CTYPE H5T_C_S1;
56 }
57 DATASPACE SCALAR
58 DATA {
59 (0): "1"
60 }
61 }
62 ATTRIBUTE "axes" {
63 DATATYPE H5T_STRING {
64 STRSIZE 9;
65 STRPAD H5T_STR_NULLPAD;
66 CSET H5T_CSET_ASCII;
67 CTYPE H5T_C_S1;
68 }
69 DATASPACE SCALAR
70 DATA {
71 (0): "two_theta"
72 }
73 }
74 ATTRIBUTE "target" {
75 DATATYPE H5T_STRING {
76 STRSIZE 33;
77 STRPAD H5T_STR_NULLPAD;
78 CSET H5T_CSET_ASCII;
79 CTYPE H5T_C_S1;
80 }
81 DATASPACE SCALAR
82 DATA {
83 (0): "/entry/instrument/detector/counts"
84 }
85 }
86 }
87 DATASET "two_theta" {
88 DATATYPE H5T_IEEE_F64LE
89 DATASPACE SIMPLE { (31) / (31) }
90 DATA {
91 (0): 17.9261, 17.9259, 17.9258, 17.9256, 17.9254, 17.9252,
92 (6): 17.9251, 17.9249, 17.9247, 17.9246, 17.9244, 17.9243,
93 (12): 17.9241, 17.9239, 17.9237, 17.9236, 17.9234, 17.9232,
94 (18): 17.9231, 17.9229, 17.9228, 17.9226, 17.9224, 17.9222,
95 (24): 17.9221, 17.9219, 17.9217, 17.9216, 17.9214, 17.9213,
96 (30): 17.9211
97 }
98 ATTRIBUTE "units" {
99 DATATYPE H5T_STRING {

100 STRSIZE 7;
101 STRPAD H5T_STR_NULLPAD;
102 CSET H5T_CSET_ASCII;
103 CTYPE H5T_C_S1;
104 }
105 DATASPACE SCALAR
106 DATA {

3.4. Examples of writing and reading NeXus data files 115

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

107 (0): "degrees"
108 }
109 }
110 ATTRIBUTE "target" {
111 DATATYPE H5T_STRING {
112 STRSIZE 36;
113 STRPAD H5T_STR_NULLPAD;
114 CSET H5T_CSET_ASCII;
115 CTYPE H5T_C_S1;
116 }
117 DATASPACE SCALAR
118 DATA {
119 (0): "/entry/instrument/detector/two_theta"
120 }
121 }
122 }
123 }
124 GROUP "instrument" {
125 ATTRIBUTE "NX_class" {
126 DATATYPE H5T_STRING {
127 STRSIZE 12;
128 STRPAD H5T_STR_NULLPAD;
129 CSET H5T_CSET_ASCII;
130 CTYPE H5T_C_S1;
131 }
132 DATASPACE SCALAR
133 DATA {
134 (0): "NXinstrument"
135 }
136 }
137 GROUP "detector" {
138 ATTRIBUTE "NX_class" {
139 DATATYPE H5T_STRING {
140 STRSIZE 10;
141 STRPAD H5T_STR_NULLPAD;
142 CSET H5T_CSET_ASCII;
143 CTYPE H5T_C_S1;
144 }
145 DATASPACE SCALAR
146 DATA {
147 (0): "NXdetector"
148 }
149 }
150 DATASET "counts" {
151 HARDLINK "/entry/data/counts"
152 }
153 DATASET "two_theta" {
154 HARDLINK "/entry/data/two_theta"
155 }
156 }
157 }
158 }
159 }

116 Chapter 3. NeXus: Reference Documentation

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

160 }

Look carefully! It appears from the output of h5dump that the actual data for two_theta and counts
has moved into the NXdata group at HDF5 path /entry/data! But we stored that data in the
NXdetector group at /entry/instrument/detector. This is normal for h5dump output.

A bit of explanation is necessary at this point. The data is not stored in either HDF5 group directly. Instead,
HDF5 creates a DATA storage element in the file and posts a reference to that DATA storage element as
needed. An HDF5 hard link requests another reference to that same DATA storage element. The h5dump
tool describes in full that DATA storage element the first time (alphabetically) it is called. In our case, that
is within the NXdata group. The next time it is called, within the NXdetector group, h5dump reports
that a hard link has been made and shows the HDF5 path to the description.

NeXus recognizes this behavior of the HDF5 library and adds an additional structure when building hard
links, the target attribute, to preserve the original location of the data. Not that it actually matters. The
h5toText.py tool knows about the additional NeXus target attribute and shows the data to appear in
its original location, in the NXdetector group.

1 writer_2_1.hdf5:NeXus data file
2 entry:NXentry
3 @NX_class = NXentry
4 data:NXdata
5 @NX_class = NXdata
6 counts --> /entry/instrument/detector/counts
7 two_theta --> /entry/instrument/detector/two_theta
8 instrument:NXinstrument
9 @NX_class = NXinstrument

10 detector:NXdetector
11 @NX_class = NXdetector
12 counts:NX_INT32[31] = __array
13 @units = counts
14 @signal = 1
15 @axes = two_theta
16 @target = /entry/instrument/detector/counts
17 __array = [1037, 1318, 1704, ’...’, 1321]
18 two_theta:NX_FLOAT64[31] = __array
19 @units = degrees
20 @target = /entry/instrument/detector/two_theta
21 __array = [17.926079999999999, 17.925909999999998, 17.925750000000001, ’...’, 17.92108]

Complete h5py example writing and reading a NeXus data file

Writing the HDF5 file In the main code section of BasicWriter.py, a current time stamp is written in
the format of ISO 8601. For simplicity of this code example, we use a text string for the time, rather than
computing it directly from Python support library calls. It is easier this way to see the exact type of string
formatting for the time. When using the Python datatime package, one way to write the time stamp is:

1 timestamp = "T".join(str(datetime.datetime.now()).split())

The data (mr is similar to “two_theta” and I00 is similar to “counts”) is collated into two Python lists. We
use our my_lib support to read the file and parse the two-column format.

3.4. Examples of writing and reading NeXus data files 117

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

The new HDF5 file is opened (and created if not already existing) for writing, setting common NeXus
attributes in the same command from our support library. Proper HDF5+NeXus groups are created for
/entry:NXentry/mr_scan:NXdata. Since we are not using the NAPI, our support library must
create and set the NX_class attribute on each group.

Note: We want to create the desired structure of /entry:NXentry/mr_scan:NXdata/. First, our
support library calls nxentry = f.create_group("entry") to create the NXentry group called
entry at the root level. Then, it calls nxdata = nxentry.create_group("mr_scan") to create
the NXentry group called entry as a child of the NXentry group.

Next, we create a dataset called title to hold a title string that can appear on the default plot.

Next, we create datasets for mr and I00 using our support library. The data type of each, as represented
in numpy, will be recognized by h5py and automatically converted to the proper HDF5 type in the file. A
Python dictionary of attributes is given, specifying the engineering units and other values needed by NeXus
to provide a default plot of this data. By setting signal="1" as an attribute on I00, NeXus recognizes
I00 as the default y axis for the plot. The axes="mr" connects the dataset to be used as the x axis.

Finally, we must remember to call f.close() or we might corrupt the file when the program quits.

BasicWriter.py: Write a NeXus HDF5 file using Python with h5py

1 #!/usr/bin/env python
2 ’’’Writes a NeXus HDF5 file using h5py and numpy’’’
3

4 import h5py # HDF5 support
5 import numpy
6 import my_lib # uses h5py
7

8 print "Write a NeXus HDF5 file"
9 fileName = "prj_test.nexus.hdf5"

10 timestamp = "2010-10-18T17:17:04-0500"
11

12 # load data from two column format
13 data = numpy.loadtxt(’input.dat’).T
14 mr_arr = data[0]
15 i00_arr = numpy.asarray(data[1],’int32’)
16

17 # create the HDF5 NeXus file
18 f = my_lib.makeFile(fileName, file_name=fileName,
19 file_time=timestamp,
20 instrument="APS USAXS at 32ID-B",
21 creator="$Id: BasicWriter.py 1091 2012-05-28 21:10:09Z Pete Jemian $",
22 NeXus_version="4.3.0",
23 HDF5_Version=h5py.version.hdf5_version,
24 h5py_version=h5py.version.version)
25

26 nxentry = my_lib.makeGroup(f, "entry", "NXentry")
27 my_lib.makeDataset(nxentry, ’title’, data=’1-D scan of I00 v. mr’)
28

118 Chapter 3. NeXus: Reference Documentation

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

29 nxdata = my_lib.makeGroup(nxentry, "mr_scan", "NXdata")
30

31 my_lib.makeDataset(nxdata, "mr", mr_arr, units=’degrees’, long_name=’USAXS mr (degrees)’)
32

33 my_lib.makeDataset(nxdata, "I00", i00_arr, units=’counts’,
34 signal=’1’, # Y axis of default plot
35 axes=’mr’, # name "mr" as X axis
36 long_name=’USAXS I00 (counts)’)
37

38 f.close() # be CERTAIN to close the file
39

40 print "wrote file:", fileName

Reading the HDF5 file The file reader, BasicReader.py, is very simple since the bulk of the work is done
by h5py. Our code opens the HDF5 we wrote above, prints the HDF5 attributes from the file, reads the
two datasets, and then prints them out as columns. As simple as that. Of course, real code might add some
error-handling and extracting other useful stuff from the file.

Note: See that we identified each of the two datasets using HDF5 absolute path references (just using the
group and dataset names). Also, while coding this example, we were reminded that HDF5 is sensitive to
upper or lowercase. That is, I00 is not the same is i00.

BasicReader.py: Read a NeXus HDF5 file using Python with h5py

1 #!/usr/bin/env python
2 ’’’Reads NeXus HDF5 files using h5py and prints the contents’’’
3

4 import h5py # HDF5 support
5

6 fileName = "prj_test.nexus.hdf5"
7 f = h5py.File(fileName, "r")
8 for item in f.attrs.keys():
9 print item + ":", f.attrs[item]

10 mr = f[’/entry/mr_scan/mr’]
11 i00 = f[’/entry/mr_scan/I00’]
12 print "%s\t%s\t%s" % ("#", "mr", "I00")
13 for i in range(len(mr)):
14 print "%d\t%g\t%d" % (i, mr[i], i00[i])
15 f.close()

Output from BasicReader.py is shown in Example-H5py-Output.

Output from BasicReader.py

1 file_name: prj_test.nexus.hdf5
2 file_time: 2010-10-18T17:17:04-0500
3 creator: $Id: BasicWriter.py 647 2010-10-19 22:34:01Z Pete Jemian $

3.4. Examples of writing and reading NeXus data files 119

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

4 HDF5_Version: 1.8.5
5 NeXus_version: 4.3.0
6 h5py_version: 1.2.1
7 instrument: APS USAXS at 32ID-B
8 # mr I00
9 0 17.9261 1037

10 1 17.9259 1318
11 2 17.9258 1704
12 3 17.9256 2857
13 4 17.9254 4516
14 5 17.9252 9998
15 6 17.9251 23819
16 7 17.9249 31662
17 8 17.9247 40458
18 9 17.9246 49087
19 10 17.9244 56514
20 11 17.9243 63499
21 12 17.9241 66802
22 13 17.9239 66863
23 14 17.9237 66599
24 15 17.9236 66206
25 16 17.9234 65747
26 17 17.9232 65250
27 18 17.9231 64129
28 19 17.9229 63044
29 20 17.9228 60796
30 21 17.9226 56795
31 22 17.9224 51550
32 23 17.9222 43710
33 24 17.9221 29315
34 25 17.9219 19782
35 26 17.9217 12992
36 27 17.9216 6622
37 28 17.9214 4198
38 29 17.9213 2248
39 30 17.9211 1321

Validating the HDF5 file Now we have an HDF5 file that contains our data. What makes this different
from a NeXus data file? A NeXus file has a specific arrangement of groups and datasets in an HDF5 file.

To test that our HDF5 file conforms to the NeXus standard, we use the NXvalidate-java program. Referring
to the next figure, we compare our HDF5 file with the rules for generic 6 data files (all.nxdl.xml). The
only items that have been flagged are the “non-standard field names” mr and I00. Neither of these two names
is specifically named in the NeXus NXDL definition for the NXdata base class. As we’ll see shortly, this
is not a problem.

Note: Note that NXvalidate shows only the first data field for mr and I00.

6 generic NeXus data files: NeXus data files for which no application-specific NXDL applies

120 Chapter 3. NeXus: Reference Documentation

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

Figure 3.5: NeXus validation of our HDF5 file

Plotting the HDF5 file Now that we are certain our file conforms to the NeXus standard, let’s plot it using
the NeXpy 7 client tool. To help label the plot, we added the long_name attributes to each of our datasets.
We also added metadata to the root level of our HDF5 file similar to that written by the NAPI. It seemed to
be a useful addition. Compare this with plot of our mr_scan (page 106) and note that the horizontal axis of
this plot is mirrored from that above. This is because the data is stored in the file in descending mr order
and NeXpy has plotted it that way by default.

Python Helper Modules for h5py Examples

Two additional Python modules were used to describe these h5py examples. The source code for each is
given here. The first is a library we wrote that helps us create standard NeXus components using h5py. The
second is a tool that helps us inspect the content and structure of HDF5 files.

mylib support module The examples in this section make use of a small helper library that calls h5py
to create the various NeXus data components of Data Groups (page 21), Data Fields (page 22), Data
Attributes (page 22), and Links (page 23). In a smaller sense, this subroutine library (my_lib) fills the role
of the NAPI for writing the data using h5py.

1 #!/usr/bin/env python
2 ’’’
3 my_lib Library of routines to support NeXus HDF5 files using h5py
4 ’’’

7 NeXpy: http://trac.mcs.anl.gov/projects/nexpy

3.4. Examples of writing and reading NeXus data files 121

http://trac.mcs.anl.gov/projects/nexpy

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

Figure 3.6: plot of our mr_scan using NeXpy

5

6 import h5py # HDF5 support
7 import numpy # in this case, provides data structures
8

9 def makeFile(filename, **attr):
10 """
11 create and open an empty NeXus HDF5 file using h5py
12

13 Any named parameters in the call to this method will be saved as
14 attributes of the root of the file.
15 Note that **attr is a dictionary of named parameters.
16

17 :param str filename: valid file name
18 :param attr: optional keywords of attributes
19 :return: h5py file object
20 """
21 f = h5py.File(filename, "w")
22 add_attributes(f, attr)
23 return f
24

25 def makeGroup(parent, name, nxclass):
26 """
27 create a NeXus group
28

29 :param obj parent: parent group
30 :param str name: valid NeXus group name
31 :param str nxclass: valid NeXus class name
32 :return: h5py group object
33 """
34 group = parent.create_group(name)

122 Chapter 3. NeXus: Reference Documentation

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

35 group.attrs["NX_class"] = nxclass
36 return group
37

38 def makeDataset(parent, name, data = None, **attr):
39 ’’’
40 create and write data to a dataset in the HDF5 file hierarchy
41

42 :param obj parent: parent group
43 :param str name: valid NeXus dataset name
44 :param obj data: the data to be saved
45 :param attr: optional keywords of attributes
46 ’’’
47 if data == None:
48 obj = parent.create_dataset(name)
49 else:
50 obj = parent.create_dataset(name, data=data)
51 add_attributes(obj, attr)
52 return obj
53

54 def makeLink(parent, sourceObject, targetName):
55 """
56 create a NeXus link in an HDF5 file.
57

58 :param obj parent: parent group of source
59 :param obj sourceObject: HDF5 object
60 :param str targetName: HDF5 node path string, such as /entry/data/data
61 """
62 if not ’target’ in sourceObject.attrs:
63 # NeXus link, NOT an HDF5 link!
64 sourceObject.attrs["target"] = str(sourceObject.name)
65 parent._id.link(sourceObject.name, targetName, h5py.h5g.LINK_HARD)
66

67 def add_attributes(parent, attr):
68 """
69 add attributes to an h5py data item
70

71 :param obj parent: h5py parent object
72 :param dict attr: dictionary of attributes
73 """
74 if attr and type(attr) == type({}):
75 # attr is a dictionary of attributes
76 for k, v in attr.items():
77 parent.attrs[k] = v
78

79 def get_2column_data(fileName):
80 ’’’read two-column data from a file, first column is float, second column is integer’’’
81 buffer = numpy.loadtxt(fileName).T
82 xArr = buffer[0]
83 yArr = numpy.asarray(buffer[1],’int32’)
84 return xArr, yArr

3.4. Examples of writing and reading NeXus data files 123

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

h5toText support module The module h5toText reads an HDF5 data file and prints out the structure
of the groups, datasets, attributes, and links in that file. There is a command-line option to print out more or
less of the data in the dataset arrays.

1 #!/usr/bin/env python
2

3 ’’’
4 Print the structure of an HDF5 file to stdout
5

6 $Id: h5toText.py 1091 2012-05-28 21:10:09Z Pete Jemian $
7 ’’’
8

9

10 ########### SVN repository information ###################
11 # $Date: 2012-05-28 23:10:09 +0200 (Mo, 28. Mai 2012) $
12 # $Author: Pete Jemian $
13 # $Revision: 1091 $
14 # $URL: https://svn.nexusformat.org/definitions/branches/docbook2sphinx/manual/source/examples/h5py/h5toText.py $
15 # $Id: h5toText.py 1091 2012-05-28 21:10:09Z Pete Jemian $
16 ########### SVN repository information ###################
17

18

19 import h5py
20 import os
21 import sys
22 import getopt
23

24

25 class H5toText(object):
26 ’’’
27 Example usage showing default display::
28

29 mc = H5toText(filename)
30 mc.array_items_shown = 5
31 mc.report()
32 ’’’
33 filename = None
34 requested_filename = None
35 isNeXus = False
36 array_items_shown = 5
37

38 def __init__(self, filename, makeReport = False):
39 ’’’ Constructor ’’’
40 self.requested_filename = filename
41 if os.path.exists(filename):
42 self.filename = filename
43 self.isNeXus = self.testIsNeXus()
44 if makeReport:
45 self.report()
46

47 def report(self):
48 ’’’ reporter ’’’
49 if self.filename == None: return
50 f = h5py.File(self.filename, ’r’)

124 Chapter 3. NeXus: Reference Documentation

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

51 txt = self.filename
52 if self.isNeXus:
53 txt += ":NeXus data file"
54 self.showGroup(f, txt, indentation = "")
55 f.close()
56

57 def testIsNeXus(self):
58 ’’’ test if the selected HDF5 file is a NeXus file ’’’
59 result = False
60 try:
61 f = h5py.File(self.filename, ’r’)
62 for value in f.itervalues():
63 if str(type(value)) in ("<class ’h5py.highlevel.Group’>"):
64 if ’NX_class’ in value.attrs:
65 v = value.attrs[’NX_class’]
66 if type(v) == type("a string"):
67 if v == ’NXentry’:
68 result = True
69 break
70 f.close()
71 except:
72 pass
73 return result
74

75 def showGroup(self, obj, name, indentation = " "):
76 ’’’print the contents of the group’’’
77 nxclass = ""
78 if ’NX_class’ in obj.attrs:
79 class_attr = obj.attrs[’NX_class’]
80 nxclass = ":" + str(class_attr)
81 print indentation + name + nxclass
82 self.showAttributes(obj, indentation)
83 group_equivalents = (
84 "<class ’h5py.highlevel.File’>",
85 "<class ’h5py.highlevel.Group’>",
86 "<class ’h5py._hl.group.Group’>",
87)
88 # show datasets (and links) first
89 for itemname in sorted(obj):
90 value = obj[itemname]
91 if str(type(value)) not in group_equivalents:
92 self.showDataset(value, itemname, indentation = indentation+" ")
93 # then show things that look like groups
94 for itemname in sorted(obj):
95 value = obj[itemname]
96 if str(type(value)) in group_equivalents:
97 self.showGroup(value, itemname, indentation = indentation+" ")
98

99 def showAttributes(self, obj, indentation = " "):
100 ’’’print any attributes’’’
101 for name, value in obj.attrs.iteritems():
102 print "%s @%s = %s" % (indentation, name, str(value))
103

3.4. Examples of writing and reading NeXus data files 125

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

104 def showDataset(self, dset, name, indentation = " "):
105 ’’’print the contents and structure of a dataset’’’
106 shape = dset.shape
107 if self.isNeXus:
108 if "target" in dset.attrs:
109 if dset.attrs[’target’] != dset.name:
110 print "%s%s --> %s" % (indentation, name, dset.attrs[’target’])
111 return
112 txType = self.getType(dset)
113 txShape = self.getShape(dset)
114 if shape == (1,):
115 value = " = %s" % str(dset[0])
116 print "%s%s:%s%s%s" % (indentation, name, txType, txShape, value)
117 self.showAttributes(dset, indentation)
118 else:
119 print "%s%s:%s%s = __array" % (indentation, name, txType, txShape)
120 self.showAttributes(dset, indentation) # show these before __array
121 if self.array_items_shown > 2:
122 value = self.formatArray(dset, indentation + ’ ’)
123 print "%s %s = %s" % (indentation, "__array", value)
124 else:
125 print "%s %s: %s" % (indentation, "__array", "not shown")
126

127 def getType(self, obj):
128 ’’’ get the storage (data) type of the dataset ’’’
129 t = str(obj.dtype)
130 if t[0:2] == ’|S’:
131 t = ’char[%s]’ % t[2:]
132 if self.isNeXus:
133 t = ’NX_’ + t.upper()
134 return t
135

136 def getShape(self, obj):
137 ’’’ return the shape of the HDF5 dataset ’’’
138 s = obj.shape
139 l = []
140 for dim in s:
141 l.append(str(dim))
142 if l == [’1’]:
143 result = ""
144 else:
145 result = "[%s]" % ",".join(l)
146 return result
147

148 def formatArray(self, obj, indentation = ’ ’):
149 ’’’ nicely format an array up to rank=5 ’’’
150 shape = obj.shape
151 r = ""
152 if len(shape) in (1, 2, 3, 4, 5):
153 r = self.formatNdArray(obj, indentation + ’ ’)
154 if len(shape) > 5:
155 r = "### no arrays for rank > 5 ###"
156 return r

126 Chapter 3. NeXus: Reference Documentation

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

157

158 def decideNumShown(self, n):
159 ’’’ determine how many values to show ’’’
160 if self.array_items_shown != None:
161 if n > self.array_items_shown:
162 n = self.array_items_shown - 2
163 return n
164

165 def formatNdArray(self, obj, indentation = ’ ’):
166 ’’’ return a list of lower-dimension arrays, nicely formatted ’’’
167 shape = obj.shape
168 rank = len(shape)
169 if not rank in (1, 2, 3, 4, 5): return None
170 n = self.decideNumShown(shape[0])
171 r = []
172 for i in range(n):
173 if rank == 1: item = obj[i]
174 if rank == 2: item = self.formatNdArray(obj[i, :])
175 if rank == 3: item = self.formatNdArray(obj[i, :, :], indentation + ’ ’)
176 if rank == 4: item = self.formatNdArray(obj[i, :, :, :], indentation + ’ ’)
177 if rank == 5: item = self.formatNdArray(obj[i, :, :, :, :], indentation + ’ ’)
178 r.append(item)
179 if n < shape[0]:
180 # skip over most
181 r.append("...")
182 # get the last one
183 if rank == 1: item = obj[-1]
184 if rank == 2: item = self.formatNdArray(obj[-1, :])
185 if rank == 3: item = self.formatNdArray(obj[-1, :, :], indentation + ’ ’)
186 if rank == 4: item = self.formatNdArray(obj[-1, :, :, :], indentation + ’ ’)
187 if rank == 5: item = self.formatNdArray(obj[-1, :, :, :, :], indentation + ’ ’)
188 r.append(item)
189 if rank == 1:
190 s = str(r)
191 else:
192 s = "[\n" + indentation + ’ ’
193 s += ("\n" + indentation + ’ ’).join(r)
194 s += "\n" + indentation + "]"
195 return s
196

197

198 if __name__ == ’__main__’:
199 limit = 5
200 filelist = []
201 filelist.append(’../Create/example1.hdf5’)
202 filelist.append(’../Create/example2.hdf5’)
203 filelist.append(’../Create/example3.hdf5’)
204 filelist.append(’../Create/example4.hdf5’)
205 filelist.append(’../../../NeXus/definitions/trunk/manual/examples/h5py/prj_test.nexus.hdf5’)
206 filelist.append(’../../../NeXus/definitions/exampledata/code/hdf5/dmc01.h5’)
207 filelist.append(’../../../NeXus/definitions/exampledata/code/hdf5/dmc02.h5’)
208 filelist.append(’../../../NeXus/definitions/exampledata/code/hdf5/focus2007n001335.hdf’)
209 filelist.append(’../../../NeXus/definitions/exampledata/code/hdf5/NXtest.h5’)

3.4. Examples of writing and reading NeXus data files 127

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

210 filelist.append(’../../../NeXus/definitions/exampledata/code/hdf5/sans2009n012333.hdf’)
211 filelist.append(’../Create/simple5.nxs’)
212 filelist.append(’../Create/bad.h5’)
213 #filelist = []
214 #filelist.append(’testG.h5’)
215 #filelist.append(’testG-pj.h5’)
216 if len(sys.argv) > 1:
217 try:
218 opts, args = getopt.getopt(sys.argv[1:], "n:")
219 except:
220 print
221 print "SVN: $Id: h5toText.py 1091 2012-05-28 21:10:09Z Pete Jemian $"
222 print "usage: ", sys.argv[0], " [-n ##] HDF5_file_name [another_HDF5_file_name]"
223 print " -n ## : limit number of displayed array items to ## (must be 3 or more or ’None’)"
224 print
225 for item in opts:
226 if item[0] == "-n":
227 if item[1].lower() == "none":
228 limit = None
229 else:
230 limit = int(item[1])
231 filelist = args
232 for item in filelist:
233 mc = H5toText(item)
234 mc.array_items_shown = limit
235 mc.report()

Viewing 2-D Data from LRMECS

The IPNS LRMECS instrument stored data in NeXus HDF4 data files. One such example is available from
the repository of NeXus data file examples. For this example, we will start with a conversion of that original
data file into HDF5 format.

HDF4 http://svn.nexusformat.org/definitions/exampledata/IPNS/LRMECS/lrcs3701.nxs

HDF5 http://svn.nexusformat.org/definitions/exampledata/IPNS/LRMECS/lrcs3701.nx5

This dataset contains two histograms with 2-D images (148x750 and 148x32) of 32-bit integers. First, we
use the h5dump tool to investigate the header content of the file (not showing any of the data).

Visualize Using h5dump

Here, the output of the command:

h5dump -H lrcs3701.nx5

has been edited to only show the first NXdata group (/Histogram1/data):

LRMECS lrcs3701 data: h5dump output

128 Chapter 3. NeXus: Reference Documentation

http://svn.nexusformat.org/definitions/exampledata/IPNS/LRMECS/lrcs3701.nxs
http://svn.nexusformat.org/definitions/exampledata/IPNS/LRMECS/lrcs3701.nx5

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

1 HDF5 "C:\Users\Pete\Documents\eclipse\NeXus\definitions\exampledata\IPNS\LRMECS\lrcs3701.nx5" {
2 GROUP "/Histogram1/data" {
3 DATASET "data" {
4 DATATYPE H5T_STD_I32LE
5 DATASPACE SIMPLE { (148, 750) / (148, 750) }
6 }
7 DATASET "polar_angle" {
8 DATATYPE H5T_IEEE_F32LE
9 DATASPACE SIMPLE { (148) / (148) }

10 }
11 DATASET "time_of_flight" {
12 DATATYPE H5T_IEEE_F32LE
13 DATASPACE SIMPLE { (751) / (751) }
14 }
15 DATASET "title" {
16 DATATYPE H5T_STRING {
17 STRSIZE 44;
18 STRPAD H5T_STR_NULLTERM;
19 CSET H5T_CSET_ASCII;
20 CTYPE H5T_C_S1;
21 }
22 DATASPACE SIMPLE { (1) / (1) }
23 }
24 }
25 }

Visualize Using HDFview

For many, the simplest way to view the data content of an HDF5 file is to use the HDFview program
(http://www.hdfgroup.org/hdf-java-html/hdfview) from The HDF Group. After starting HDFview, the data
file may be loaded by dragging it into the main HDF window. On opening up to the first NXdata group
/Histogram1/data (as above), and then double-clicking the dataset called: data, we get our first view of the
data.

The data may be represented as an image by accessing the Open As menu from HDFview (on Windows,
right click the dataset called data and select the Open As item, consult the HDFview documentation for
different platform instructions). Be sure to select the Image radio button, and then (accepting everything
else as a default) press the Ok button.

Note: In this image, dark represents low intensity while white represents high intensity.

LRMECS lrcs3701 data: image

Visualize Using IgorPro

Another way to visualize this data is to use a commercial package for scientific data visualization and
analysis. One such package is IgorPro from http://www.wavemetrics.com

3.4. Examples of writing and reading NeXus data files 129

http://www.hdfgroup.org/hdf-java-html/hdfview
http://www.wavemetrics.com

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

Figure 3.7: LRMECS lrcs3701 data: HDFview

130 Chapter 3. NeXus: Reference Documentation

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

Figure 3.8: LRMECS lrcs3701 data: HDFview Open As dialog

Figure 3.9: LRMECS lrcs3701 data: HDFview Image

3.4. Examples of writing and reading NeXus data files 131

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

IgorPro provides a browser for HDF5 files that can open our NeXus HDF5 and display
the image. Follow the instructions from WaveMetrics to install the HDF5 Browser package:
http://www.wavemetrics.com/products/igorpro/dataaccess/hdf5.htm

You may not have to do this step if you have already installed the HDF5 Browser. IgorPro will tell you if it is
not installed properly. To install the HDF5 Browser, first start IgorPro. Next, select from the menus and sub-
menus: Data; Load Waves; Packages; Install HDF5 Package as shown in the next figure.
IgorPro may direct you to perform more activities before you progress from this step.

Figure 3.10: LRMECS lrcs3701 data: IgorPro install HDF5 Browser

Next, open the HDF5 Browser by selecting from the menus and submenus: Data; Load Waves; New
HDF5 Browser as shown in the next figure.

Next, click the Open HDF5 File button and open the NeXus HDF5 file lrcs3701.nxs. In the lower left
Groups panel, click the data dataset. Also, under the panel on the right called Load Dataset Options, choose
No Table as shown. Finally, click the Load Dataset button (in the Datasets group) to display the image.

Note: In this image, dark represents low intensity while white represents high intensity. The image has
been rotated for easier representation in this manual.

LRMECS lrcs3701 data: image

132 Chapter 3. NeXus: Reference Documentation

http://www.wavemetrics.com/products/igorpro/dataaccess/hdf5.htm

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

Figure 3.11: LRMECS lrcs3701 data: IgorPro HDFBrowser dialog

3.4. Examples of writing and reading NeXus data files 133

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

Figure 3.12: LRMECS lrcs3701 data: IgorPro HDFBrowser dialog

Figure 3.13: LRMECS lrcs3701 data: IgorPro Image

134 Chapter 3. NeXus: Reference Documentation

CHAPTER

FOUR

AUTHORS

Ray Osborn <rosborn@anl.gov>, Argonne National Laboratory, Argonne, IL, USA,

Mark Könnecke Mark Könnecke, <Mark.Koennecke@psi.ch>, Paul Scherrer Institut,
CH-5232 Villigen PSI, Switzerland,

Przemek Klosowski <przemek.klosowski@nist.gov>, U. of Maryland and NIST,
Gaithersburg, MD, USA,

Frederick Akeroyd <freddie.akeroyd@stfc.ac.uk>, Rutherford Appleton Labora-
tory, Didcot, UK,

Peter F. Peterson <petersonpf@ornl.gov>, Spallation Neutron Source, Oak Ridge,
TN, USA,

Pete Jemian <jemian@anl.gov>, Advanced Photon Source, Argonne, IL, USA,

Stuart I. Campbell <campbellsi@ornl.gov>, Oak Ridge National Laboratory, Oak
Ridge, TN, USA,

Tobias Richter <Tobias.Richter@diamond.ac.uk>, Diamond Light Source Ltd.,
Didcot, UK

135

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

136 Chapter 4. Authors

CHAPTER

FIVE

REVISION HISTORY

date re-
lease

description ini-
tials

2012-
09

Documentation converted from DocBook to Sphinx PRJ

2012-
05

3.1 Ready for release. PRJ

2012-
02

Now using cmake to control multiplatform build and packaging. PRJ

2011-
11

1.0b Preparing manual for initial release. Also preparing to convert manual source
from DocBook to Sphinx for next release of manual.

PRJ

2010-
11

draft Nearly complete but still much finishing work remains. The description of
dimensions and the description of the coordinate system needs major revision
and improvement. More examples are needed. The manual is now divided into
two volumes. Volume I is the User Manual, Volume II is the Reference
Documentation. Much of the NXDL chapter in Volume II is autogenerated from
the nxdl.xsd Schema and the NXDL source files.
Initial release of NXDL, manual, and next release of NAPI (compatibility
release) expected in mid-2011.

PRJ

2010
spring

ini-
tial
draft

Most of the content from the old NeXus mediawiki documentation is included.
Some new wiki content has been introduced but should be easy to identify for
inclusion in the manual.

PRJ

2009-
11

Started conversion from the old NeXus mediawiki documentation. PFP

137

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

138 Chapter 5. Revision History

CHAPTER

SIX

LICENSES

The full texts of the software licenses governing this document (FDL) and the example in this document
(LGPL) are provided in this appendix.

6.1 FDL: GNU Free Documentation License

1 GNU Free Documentation License
2 Version 1.3, 3 November 2008
3

4

5 Copyright (C) 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
6 <http://fsf.org/>
7 Everyone is permitted to copy and distribute verbatim copies
8 of this license document, but changing it is not allowed.
9

10 0. PREAMBLE
11

12 The purpose of this License is to make a manual, textbook, or other
13 functional and useful document "free" in the sense of freedom: to
14 assure everyone the effective freedom to copy and redistribute it,
15 with or without modifying it, either commercially or noncommercially.
16 Secondarily, this License preserves for the author and publisher a way
17 to get credit for their work, while not being considered responsible
18 for modifications made by others.
19

20 This License is a kind of "copyleft", which means that derivative
21 works of the document must themselves be free in the same sense. It
22 complements the GNU General Public License, which is a copyleft
23 license designed for free software.
24

25 We have designed this License in order to use it for manuals for free
26 software, because free software needs free documentation: a free
27 program should come with manuals providing the same freedoms that the
28 software does. But this License is not limited to software manuals;
29 it can be used for any textual work, regardless of subject matter or
30 whether it is published as a printed book. We recommend this License
31 principally for works whose purpose is instruction or reference.
32

139

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

33

34 1. APPLICABILITY AND DEFINITIONS
35

36 This License applies to any manual or other work, in any medium, that
37 contains a notice placed by the copyright holder saying it can be
38 distributed under the terms of this License. Such a notice grants a
39 world-wide, royalty-free license, unlimited in duration, to use that
40 work under the conditions stated herein. The "Document", below,
41 refers to any such manual or work. Any member of the public is a
42 licensee, and is addressed as "you". You accept the license if you
43 copy, modify or distribute the work in a way requiring permission
44 under copyright law.
45

46 A "Modified Version" of the Document means any work containing the
47 Document or a portion of it, either copied verbatim, or with
48 modifications and/or translated into another language.
49

50 A "Secondary Section" is a named appendix or a front-matter section of
51 the Document that deals exclusively with the relationship of the
52 publishers or authors of the Document to the Document’s overall
53 subject (or to related matters) and contains nothing that could fall
54 directly within that overall subject. (Thus, if the Document is in
55 part a textbook of mathematics, a Secondary Section may not explain
56 any mathematics.) The relationship could be a matter of historical
57 connection with the subject or with related matters, or of legal,
58 commercial, philosophical, ethical or political position regarding
59 them.
60

61 The "Invariant Sections" are certain Secondary Sections whose titles
62 are designated, as being those of Invariant Sections, in the notice
63 that says that the Document is released under this License. If a
64 section does not fit the above definition of Secondary then it is not
65 allowed to be designated as Invariant. The Document may contain zero
66 Invariant Sections. If the Document does not identify any Invariant
67 Sections then there are none.
68

69 The "Cover Texts" are certain short passages of text that are listed,
70 as Front-Cover Texts or Back-Cover Texts, in the notice that says that
71 the Document is released under this License. A Front-Cover Text may
72 be at most 5 words, and a Back-Cover Text may be at most 25 words.
73

74 A "Transparent" copy of the Document means a machine-readable copy,
75 represented in a format whose specification is available to the
76 general public, that is suitable for revising the document
77 straightforwardly with generic text editors or (for images composed of
78 pixels) generic paint programs or (for drawings) some widely available
79 drawing editor, and that is suitable for input to text formatters or
80 for automatic translation to a variety of formats suitable for input
81 to text formatters. A copy made in an otherwise Transparent file
82 format whose markup, or absence of markup, has been arranged to thwart
83 or discourage subsequent modification by readers is not Transparent.
84 An image format is not Transparent if used for any substantial amount
85 of text. A copy that is not "Transparent" is called "Opaque".

140 Chapter 6. Licenses

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

86

87 Examples of suitable formats for Transparent copies include plain
88 ASCII without markup, Texinfo input format, LaTeX input format, SGML
89 or XML using a publicly available DTD, and standard-conforming simple
90 HTML, PostScript or PDF designed for human modification. Examples of
91 transparent image formats include PNG, XCF and JPG. Opaque formats
92 include proprietary formats that can be read and edited only by
93 proprietary word processors, SGML or XML for which the DTD and/or
94 processing tools are not generally available, and the
95 machine-generated HTML, PostScript or PDF produced by some word
96 processors for output purposes only.
97

98 The "Title Page" means, for a printed book, the title page itself,
99 plus such following pages as are needed to hold, legibly, the material

100 this License requires to appear in the title page. For works in
101 formats which do not have any title page as such, "Title Page" means
102 the text near the most prominent appearance of the work’s title,
103 preceding the beginning of the body of the text.
104

105 The "publisher" means any person or entity that distributes copies of
106 the Document to the public.
107

108 A section "Entitled XYZ" means a named subunit of the Document whose
109 title either is precisely XYZ or contains XYZ in parentheses following
110 text that translates XYZ in another language. (Here XYZ stands for a
111 specific section name mentioned below, such as "Acknowledgements",
112 "Dedications", "Endorsements", or "History".) To "Preserve the Title"
113 of such a section when you modify the Document means that it remains a
114 section "Entitled XYZ" according to this definition.
115

116 The Document may include Warranty Disclaimers next to the notice which
117 states that this License applies to the Document. These Warranty
118 Disclaimers are considered to be included by reference in this
119 License, but only as regards disclaiming warranties: any other
120 implication that these Warranty Disclaimers may have is void and has
121 no effect on the meaning of this License.
122

123 2. VERBATIM COPYING
124

125 You may copy and distribute the Document in any medium, either
126 commercially or noncommercially, provided that this License, the
127 copyright notices, and the license notice saying this License applies
128 to the Document are reproduced in all copies, and that you add no
129 other conditions whatsoever to those of this License. You may not use
130 technical measures to obstruct or control the reading or further
131 copying of the copies you make or distribute. However, you may accept
132 compensation in exchange for copies. If you distribute a large enough
133 number of copies you must also follow the conditions in section 3.
134

135 You may also lend copies, under the same conditions stated above, and
136 you may publicly display copies.
137

138

6.1. FDL: GNU Free Documentation License 141

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

139 3. COPYING IN QUANTITY
140

141 If you publish printed copies (or copies in media that commonly have
142 printed covers) of the Document, numbering more than 100, and the
143 Document’s license notice requires Cover Texts, you must enclose the
144 copies in covers that carry, clearly and legibly, all these Cover
145 Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
146 the back cover. Both covers must also clearly and legibly identify
147 you as the publisher of these copies. The front cover must present
148 the full title with all words of the title equally prominent and
149 visible. You may add other material on the covers in addition.
150 Copying with changes limited to the covers, as long as they preserve
151 the title of the Document and satisfy these conditions, can be treated
152 as verbatim copying in other respects.
153

154 If the required texts for either cover are too voluminous to fit
155 legibly, you should put the first ones listed (as many as fit
156 reasonably) on the actual cover, and continue the rest onto adjacent
157 pages.
158

159 If you publish or distribute Opaque copies of the Document numbering
160 more than 100, you must either include a machine-readable Transparent
161 copy along with each Opaque copy, or state in or with each Opaque copy
162 a computer-network location from which the general network-using
163 public has access to download using public-standard network protocols
164 a complete Transparent copy of the Document, free of added material.
165 If you use the latter option, you must take reasonably prudent steps,
166 when you begin distribution of Opaque copies in quantity, to ensure
167 that this Transparent copy will remain thus accessible at the stated
168 location until at least one year after the last time you distribute an
169 Opaque copy (directly or through your agents or retailers) of that
170 edition to the public.
171

172 It is requested, but not required, that you contact the authors of the
173 Document well before redistributing any large number of copies, to
174 give them a chance to provide you with an updated version of the
175 Document.
176

177

178 4. MODIFICATIONS
179

180 You may copy and distribute a Modified Version of the Document under
181 the conditions of sections 2 and 3 above, provided that you release
182 the Modified Version under precisely this License, with the Modified
183 Version filling the role of the Document, thus licensing distribution
184 and modification of the Modified Version to whoever possesses a copy
185 of it. In addition, you must do these things in the Modified Version:
186

187 A. Use in the Title Page (and on the covers, if any) a title distinct
188 from that of the Document, and from those of previous versions
189 (which should, if there were any, be listed in the History section
190 of the Document). You may use the same title as a previous version
191 if the original publisher of that version gives permission.

142 Chapter 6. Licenses

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

192 B. List on the Title Page, as authors, one or more persons or entities
193 responsible for authorship of the modifications in the Modified
194 Version, together with at least five of the principal authors of the
195 Document (all of its principal authors, if it has fewer than five),
196 unless they release you from this requirement.
197 C. State on the Title page the name of the publisher of the
198 Modified Version, as the publisher.
199 D. Preserve all the copyright notices of the Document.
200 E. Add an appropriate copyright notice for your modifications
201 adjacent to the other copyright notices.
202 F. Include, immediately after the copyright notices, a license notice
203 giving the public permission to use the Modified Version under the
204 terms of this License, in the form shown in the Addendum below.
205 G. Preserve in that license notice the full lists of Invariant Sections
206 and required Cover Texts given in the Document’s license notice.
207 H. Include an unaltered copy of this License.
208 I. Preserve the section Entitled "History", Preserve its Title, and add
209 to it an item stating at least the title, year, new authors, and
210 publisher of the Modified Version as given on the Title Page. If
211 there is no section Entitled "History" in the Document, create one
212 stating the title, year, authors, and publisher of the Document as
213 given on its Title Page, then add an item describing the Modified
214 Version as stated in the previous sentence.
215 J. Preserve the network location, if any, given in the Document for
216 public access to a Transparent copy of the Document, and likewise
217 the network locations given in the Document for previous versions
218 it was based on. These may be placed in the "History" section.
219 You may omit a network location for a work that was published at
220 least four years before the Document itself, or if the original
221 publisher of the version it refers to gives permission.
222 K. For any section Entitled "Acknowledgements" or "Dedications",
223 Preserve the Title of the section, and preserve in the section all
224 the substance and tone of each of the contributor acknowledgements
225 and/or dedications given therein.
226 L. Preserve all the Invariant Sections of the Document,
227 unaltered in their text and in their titles. Section numbers
228 or the equivalent are not considered part of the section titles.
229 M. Delete any section Entitled "Endorsements". Such a section
230 may not be included in the Modified Version.
231 N. Do not retitle any existing section to be Entitled "Endorsements"
232 or to conflict in title with any Invariant Section.
233 O. Preserve any Warranty Disclaimers.
234

235 If the Modified Version includes new front-matter sections or
236 appendices that qualify as Secondary Sections and contain no material
237 copied from the Document, you may at your option designate some or all
238 of these sections as invariant. To do this, add their titles to the
239 list of Invariant Sections in the Modified Version’s license notice.
240 These titles must be distinct from any other section titles.
241

242 You may add a section Entitled "Endorsements", provided it contains
243 nothing but endorsements of your Modified Version by various
244 parties--for example, statements of peer review or that the text has

6.1. FDL: GNU Free Documentation License 143

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

245 been approved by an organization as the authoritative definition of a
246 standard.
247

248 You may add a passage of up to five words as a Front-Cover Text, and a
249 passage of up to 25 words as a Back-Cover Text, to the end of the list
250 of Cover Texts in the Modified Version. Only one passage of
251 Front-Cover Text and one of Back-Cover Text may be added by (or
252 through arrangements made by) any one entity. If the Document already
253 includes a cover text for the same cover, previously added by you or
254 by arrangement made by the same entity you are acting on behalf of,
255 you may not add another; but you may replace the old one, on explicit
256 permission from the previous publisher that added the old one.
257

258 The author(s) and publisher(s) of the Document do not by this License
259 give permission to use their names for publicity for or to assert or
260 imply endorsement of any Modified Version.
261

262

263 5. COMBINING DOCUMENTS
264

265 You may combine the Document with other documents released under this
266 License, under the terms defined in section 4 above for modified
267 versions, provided that you include in the combination all of the
268 Invariant Sections of all of the original documents, unmodified, and
269 list them all as Invariant Sections of your combined work in its
270 license notice, and that you preserve all their Warranty Disclaimers.
271

272 The combined work need only contain one copy of this License, and
273 multiple identical Invariant Sections may be replaced with a single
274 copy. If there are multiple Invariant Sections with the same name but
275 different contents, make the title of each such section unique by
276 adding at the end of it, in parentheses, the name of the original
277 author or publisher of that section if known, or else a unique number.
278 Make the same adjustment to the section titles in the list of
279 Invariant Sections in the license notice of the combined work.
280

281 In the combination, you must combine any sections Entitled "History"
282 in the various original documents, forming one section Entitled
283 "History"; likewise combine any sections Entitled "Acknowledgements",
284 and any sections Entitled "Dedications". You must delete all sections
285 Entitled "Endorsements".
286

287

288 6. COLLECTIONS OF DOCUMENTS
289

290 You may make a collection consisting of the Document and other
291 documents released under this License, and replace the individual
292 copies of this License in the various documents with a single copy
293 that is included in the collection, provided that you follow the rules
294 of this License for verbatim copying of each of the documents in all
295 other respects.
296

297 You may extract a single document from such a collection, and

144 Chapter 6. Licenses

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

298 distribute it individually under this License, provided you insert a
299 copy of this License into the extracted document, and follow this
300 License in all other respects regarding verbatim copying of that
301 document.
302

303

304 7. AGGREGATION WITH INDEPENDENT WORKS
305

306 A compilation of the Document or its derivatives with other separate
307 and independent documents or works, in or on a volume of a storage or
308 distribution medium, is called an "aggregate" if the copyright
309 resulting from the compilation is not used to limit the legal rights
310 of the compilation’s users beyond what the individual works permit.
311 When the Document is included in an aggregate, this License does not
312 apply to the other works in the aggregate which are not themselves
313 derivative works of the Document.
314

315 If the Cover Text requirement of section 3 is applicable to these
316 copies of the Document, then if the Document is less than one half of
317 the entire aggregate, the Document’s Cover Texts may be placed on
318 covers that bracket the Document within the aggregate, or the
319 electronic equivalent of covers if the Document is in electronic form.
320 Otherwise they must appear on printed covers that bracket the whole
321 aggregate.
322

323

324 8. TRANSLATION
325

326 Translation is considered a kind of modification, so you may
327 distribute translations of the Document under the terms of section 4.
328 Replacing Invariant Sections with translations requires special
329 permission from their copyright holders, but you may include
330 translations of some or all Invariant Sections in addition to the
331 original versions of these Invariant Sections. You may include a
332 translation of this License, and all the license notices in the
333 Document, and any Warranty Disclaimers, provided that you also include
334 the original English version of this License and the original versions
335 of those notices and disclaimers. In case of a disagreement between
336 the translation and the original version of this License or a notice
337 or disclaimer, the original version will prevail.
338

339 If a section in the Document is Entitled "Acknowledgements",
340 "Dedications", or "History", the requirement (section 4) to Preserve
341 its Title (section 1) will typically require changing the actual
342 title.
343

344

345 9. TERMINATION
346

347 You may not copy, modify, sublicense, or distribute the Document
348 except as expressly provided under this License. Any attempt
349 otherwise to copy, modify, sublicense, or distribute it is void, and
350 will automatically terminate your rights under this License.

6.1. FDL: GNU Free Documentation License 145

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

351

352 However, if you cease all violation of this License, then your license
353 from a particular copyright holder is reinstated (a) provisionally,
354 unless and until the copyright holder explicitly and finally
355 terminates your license, and (b) permanently, if the copyright holder
356 fails to notify you of the violation by some reasonable means prior to
357 60 days after the cessation.
358

359 Moreover, your license from a particular copyright holder is
360 reinstated permanently if the copyright holder notifies you of the
361 violation by some reasonable means, this is the first time you have
362 received notice of violation of this License (for any work) from that
363 copyright holder, and you cure the violation prior to 30 days after
364 your receipt of the notice.
365

366 Termination of your rights under this section does not terminate the
367 licenses of parties who have received copies or rights from you under
368 this License. If your rights have been terminated and not permanently
369 reinstated, receipt of a copy of some or all of the same material does
370 not give you any rights to use it.
371

372

373 10. FUTURE REVISIONS OF THIS LICENSE
374

375 The Free Software Foundation may publish new, revised versions of the
376 GNU Free Documentation License from time to time. Such new versions
377 will be similar in spirit to the present version, but may differ in
378 detail to address new problems or concerns. See
379 http://www.gnu.org/copyleft/.
380

381 Each version of the License is given a distinguishing version number.
382 If the Document specifies that a particular numbered version of this
383 License "or any later version" applies to it, you have the option of
384 following the terms and conditions either of that specified version or
385 of any later version that has been published (not as a draft) by the
386 Free Software Foundation. If the Document does not specify a version
387 number of this License, you may choose any version ever published (not
388 as a draft) by the Free Software Foundation. If the Document
389 specifies that a proxy can decide which future versions of this
390 License can be used, that proxy’s public statement of acceptance of a
391 version permanently authorizes you to choose that version for the
392 Document.
393

394 11. RELICENSING
395

396 "Massive Multiauthor Collaboration Site" (or "MMC Site") means any
397 World Wide Web server that publishes copyrightable works and also
398 provides prominent facilities for anybody to edit those works. A
399 public wiki that anybody can edit is an example of such a server. A
400 "Massive Multiauthor Collaboration" (or "MMC") contained in the site
401 means any set of copyrightable works thus published on the MMC site.
402

403 "CC-BY-SA" means the Creative Commons Attribution-Share Alike 3.0

146 Chapter 6. Licenses

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

404 license published by Creative Commons Corporation, a not-for-profit
405 corporation with a principal place of business in San Francisco,
406 California, as well as future copyleft versions of that license
407 published by that same organization.
408

409 "Incorporate" means to publish or republish a Document, in whole or in
410 part, as part of another Document.
411

412 An MMC is "eligible for relicensing" if it is licensed under this
413 License, and if all works that were first published under this License
414 somewhere other than this MMC, and subsequently incorporated in whole or
415 in part into the MMC, (1) had no cover texts or invariant sections, and
416 (2) were thus incorporated prior to November 1, 2008.
417

418 The operator of an MMC Site may republish an MMC contained in the site
419 under CC-BY-SA on the same site at any time before August 1, 2009,
420 provided the MMC is eligible for relicensing.
421

422

423 ADDENDUM: How to use this License for your documents
424

425 To use this License in a document you have written, include a copy of
426 the License in the document and put the following copyright and
427 license notices just after the title page:
428

429 Copyright (c) YEAR YOUR NAME.
430 Permission is granted to copy, distribute and/or modify this document
431 under the terms of the GNU Free Documentation License, Version 1.3
432 or any later version published by the Free Software Foundation;
433 with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
434 A copy of the license is included in the section entitled "GNU
435 Free Documentation License".
436

437 If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts,
438 replace the "with...Texts." line with this:
439

440 with the Invariant Sections being LIST THEIR TITLES, with the
441 Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.
442

443 If you have Invariant Sections without Cover Texts, or some other
444 combination of the three, merge those two alternatives to suit the
445 situation.
446

447 If your document contains nontrivial examples of program code, we
448 recommend releasing these examples in parallel under your choice of
449 free software license, such as the GNU General Public License,
450 to permit their use in free software.

6.1. FDL: GNU Free Documentation License 147

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

6.2 LGPL: GNU Lesser Gnu Public License

1 GNU LESSER GENERAL PUBLIC LICENSE
2 Version 3, 29 June 2007
3

4 Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
5 Everyone is permitted to copy and distribute verbatim copies
6 of this license document, but changing it is not allowed.
7

8

9 This version of the GNU Lesser General Public License incorporates
10 the terms and conditions of version 3 of the GNU General Public
11 License, supplemented by the additional permissions listed below.
12

13 0. Additional Definitions.
14

15 As used herein, "this License" refers to version 3 of the GNU Lesser
16 General Public License, and the "GNU GPL" refers to version 3 of the GNU
17 General Public License.
18

19 "The Library" refers to a covered work governed by this License,
20 other than an Application or a Combined Work as defined below.
21

22 An "Application" is any work that makes use of an interface provided
23 by the Library, but which is not otherwise based on the Library.
24 Defining a subclass of a class defined by the Library is deemed a mode
25 of using an interface provided by the Library.
26

27 A "Combined Work" is a work produced by combining or linking an
28 Application with the Library. The particular version of the Library
29 with which the Combined Work was made is also called the "Linked
30 Version".
31

32 The "Minimal Corresponding Source" for a Combined Work means the
33 Corresponding Source for the Combined Work, excluding any source code
34 for portions of the Combined Work that, considered in isolation, are
35 based on the Application, and not on the Linked Version.
36

37 The "Corresponding Application Code" for a Combined Work means the
38 object code and/or source code for the Application, including any data
39 and utility programs needed for reproducing the Combined Work from the
40 Application, but excluding the System Libraries of the Combined Work.
41

42 1. Exception to Section 3 of the GNU GPL.
43

44 You may convey a covered work under sections 3 and 4 of this License
45 without being bound by section 3 of the GNU GPL.
46

47 2. Conveying Modified Versions.
48

49 If you modify a copy of the Library, and, in your modifications, a
50 facility refers to a function or data to be supplied by an Application
51 that uses the facility (other than as an argument passed when the

148 Chapter 6. Licenses

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

52 facility is invoked), then you may convey a copy of the modified
53 version:
54

55 a) under this License, provided that you make a good faith effort to
56 ensure that, in the event an Application does not supply the
57 function or data, the facility still operates, and performs
58 whatever part of its purpose remains meaningful, or
59

60 b) under the GNU GPL, with none of the additional permissions of
61 this License applicable to that copy.
62

63 3. Object Code Incorporating Material from Library Header Files.
64

65 The object code form of an Application may incorporate material from
66 a header file that is part of the Library. You may convey such object
67 code under terms of your choice, provided that, if the incorporated
68 material is not limited to numerical parameters, data structure
69 layouts and accessors, or small macros, inline functions and templates
70 (ten or fewer lines in length), you do both of the following:
71

72 a) Give prominent notice with each copy of the object code that the
73 Library is used in it and that the Library and its use are
74 covered by this License.
75

76 b) Accompany the object code with a copy of the GNU GPL and this license
77 document.
78

79 4. Combined Works.
80

81 You may convey a Combined Work under terms of your choice that,
82 taken together, effectively do not restrict modification of the
83 portions of the Library contained in the Combined Work and reverse
84 engineering for debugging such modifications, if you also do each of
85 the following:
86

87 a) Give prominent notice with each copy of the Combined Work that
88 the Library is used in it and that the Library and its use are
89 covered by this License.
90

91 b) Accompany the Combined Work with a copy of the GNU GPL and this license
92 document.
93

94 c) For a Combined Work that displays copyright notices during
95 execution, include the copyright notice for the Library among
96 these notices, as well as a reference directing the user to the
97 copies of the GNU GPL and this license document.
98

99 d) Do one of the following:
100

101 0) Convey the Minimal Corresponding Source under the terms of this
102 License, and the Corresponding Application Code in a form
103 suitable for, and under terms that permit, the user to
104 recombine or relink the Application with a modified version of

6.2. LGPL: GNU Lesser Gnu Public License 149

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

105 the Linked Version to produce a modified Combined Work, in the
106 manner specified by section 6 of the GNU GPL for conveying
107 Corresponding Source.
108

109 1) Use a suitable shared library mechanism for linking with the
110 Library. A suitable mechanism is one that (a) uses at run time
111 a copy of the Library already present on the user’s computer
112 system, and (b) will operate properly with a modified version
113 of the Library that is interface-compatible with the Linked
114 Version.
115

116 e) Provide Installation Information, but only if you would otherwise
117 be required to provide such information under section 6 of the
118 GNU GPL, and only to the extent that such information is
119 necessary to install and execute a modified version of the
120 Combined Work produced by recombining or relinking the
121 Application with a modified version of the Linked Version. (If
122 you use option 4d0, the Installation Information must accompany
123 the Minimal Corresponding Source and Corresponding Application
124 Code. If you use option 4d1, you must provide the Installation
125 Information in the manner specified by section 6 of the GNU GPL
126 for conveying Corresponding Source.)
127

128 5. Combined Libraries.
129

130 You may place library facilities that are a work based on the
131 Library side by side in a single library together with other library
132 facilities that are not Applications and are not covered by this
133 License, and convey such a combined library under terms of your
134 choice, if you do both of the following:
135

136 a) Accompany the combined library with a copy of the same work based
137 on the Library, uncombined with any other library facilities,
138 conveyed under the terms of this License.
139

140 b) Give prominent notice with the combined library that part of it
141 is a work based on the Library, and explaining where to find the
142 accompanying uncombined form of the same work.
143

144 6. Revised Versions of the GNU Lesser General Public License.
145

146 The Free Software Foundation may publish revised and/or new versions
147 of the GNU Lesser General Public License from time to time. Such new
148 versions will be similar in spirit to the present version, but may
149 differ in detail to address new problems or concerns.
150

151 Each version is given a distinguishing version number. If the
152 Library as you received it specifies that a certain numbered version
153 of the GNU Lesser General Public License "or any later version"
154 applies to it, you have the option of following the terms and
155 conditions either of that published version or of any later version
156 published by the Free Software Foundation. If the Library as you
157 received it does not specify a version number of the GNU Lesser

150 Chapter 6. Licenses

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

158 General Public License, you may choose any version of the GNU Lesser
159 General Public License ever published by the Free Software Foundation.
160

161 If the Library as you received it specifies that a proxy can decide
162 whether future versions of the GNU Lesser General Public License shall
163 apply, that proxy’s public statement of acceptance of any version is
164 permanent authorization for you to choose that version for the
165 Library.

This manual built September 18, 2012

6.2. LGPL: GNU Lesser Gnu Public License 151

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

152 Chapter 6. Licenses

INDEX

A
attributes, 44, 47, 48, 92

data, 8, 18
automatic plotting, 25
axes, 22, 41
axis, 22, 42

C
classes

base classes
NXdata, 9
NXentry, 9
NXinstrument, 10
NXsample, 9

coordinate systems, 26
CIF, 26
IUCr, 27
McStas, 26, 27
NeXus polar coordinate, 26
spherical polar, 27
transformations, 28

order of operations, 28

D
data

attributes, 8
multi-dimensional, 41

data objects
attributes, 22

global, 22
data items, 21
fields, 8, 21, 21
groups, 8, 21

data objects, fields, see HDF, see Scientific Data
Sets, see SDS

data types
NXDL, 88

date and time, 22, see ISO 8601, 40
time, 22

DAVE, 76
default plot

NeXus basic motivation, 25
dimension, 23, 41, 47, 48

data set, 42, 57, 80
dimension scales, 41–43
fastest varying, 42
storage order, 37

dimension scale, 22, 23, 25, 43

E
enumeration, 41

F
FAQ, 78
file

browse, 19
read, 19
write, 17

G
GDA, 77
geometry, 26, 27
Gumtree, 77

H
h5py, 105
HDF, 69, 73

Scientific Data Sets, 8
HDF Group command line tools, 77
HDF tools

HDF Group command line tools, 77
HDFexplorer, 77
HDFview, 77
IDL, 77

153

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

IGOR Pro, 78
MATLAB, 78

HDF5
examples, 100

HDFexplorer, 77
HDFview, 77
hierarchy, 8, 21, 30, 32, 53, 54, 76

example NeXus file, 8
NeXus, 60

I
IDL, 77
IGOR Pro, 78
installation, 69
instrument definitions, 12
ISAW, 77
ISO 8601, 22
issue reporting, 68

L
LAMP, 77
license

FDL, 139
LGPL, 147

link, 8, 41, 48, 75, 80
target, 23

M
mailing lists, 64
Mantid, 77
MATLAB, 78
McStas, 26, 27
metadata, 52, 53, 60, 71, 88, 89
monitor, 43
multi-dimensional data, 41

N
NAPI, 8, 15, 17, 17, 62, 76, 80

bypassing, 44
examples, 93
java, 81

NAPIlink, 48
NeXpy, 77
NeXus, 7

Community, 63
Design Principles, 8
low-level file formats, 44
nxbrowse, 75

nxconvert, 76
nxdir, 76
nxingest, 76
NXplot, 76
nxsummary, 76
nxtranslate, 76
NXvalidate, 76
nxvalidate, 76

NeXus basic motivation, 14
default plot, 8, 9, 15, 18, 22, 24, 25, 32, 42, 76,

79
defined dictionary, 17
unified format, 7, 15

NeXus basic motivation, default plot
automatic plotting, 25

NeXus Definition Language, 87
NeXus International Advisory Committee, 63

NIAC, 63
NIAC, 63, 64, 79

NeXus International Advisory Committee, 63
nxbrowse, 75
nxconvert, 76
NXdata, 42
nxdir, 76
NXDL, 24, 75, 79, 87, 87, 89, 90

data types, 88
units, 88

nxingest, 76
NXplot, 76
nxsummary, 76
nxtranslate, 76
NXvalidate, 76
nxvalidate, 76

O
OpenGENIE, 77

P
PyMCA, 77

R
rank, 18, 22, 23, 42, 44, 57
regular expression, 36
roadmap, 68
rules, 7, 73

HDF, 21, 92
HDF5, 37
naming, 24, 29, 92

154 Index

NeXus: a common data format for neutron, x-ray, and muon science, Release 3.1

NeXus, 29, 72, 74, 75
naming, 36

NXDL, 72, 74, 90
Schematron, 75
XML, 92

S
Schematron, 73–75
Scientific Data Sets

SDS, 8
SDS

Scientific Data Sets, 8
strategies, 60

simplest case(s), 61

T
target

link, 23
time, 22
TRAC, 68
tutorial

WONI, 49

U
UDunits, 40, 41
Unidata UDunits, 40
units, 8, 18, 22, 40, 92

NXDL, 88
utility, 75, 76

DAVE, 76
GDA, 77
Gumtree, 77
ISAW, 77
LAMP, 77
Mantid, 77
NeXpy, 77
nxbrowse, 19
OpenGENIE, 77
PyMCA, 77

V
validation, 71

NeXus data files, 73
NXDL rules, 74
NXDL specifications, 74
XSLT files, 74

verification, 71

W
WONI, 49

X
XML, 15, 69, 73
XML Schema (XSD), 73, 74
XSD, 73
XSLT, 73, 74

Index 155

	I User Manual and Reference Documentation
	Copyright
	Licenses

	NeXus: User Manual
	Preface
	NeXus Introduction
	NeXus Design
	Constructing NeXus Files and Application Definitions
	Strategies for storing information in NeXus data files
	Brief history of the NeXus format
	NeXus Community
	Installation
	Verification and validation of files
	NeXus Utilities
	Frequently Asked Questions

	NeXus: Reference Documentation
	NAPI: NeXus Application Programmer Interface
	NXDL: The NeXus Definition Language
	NeXus classes
	Examples of writing and reading NeXus data files

	Authors
	Revision History
	Licenses
	FDL: GNU Free Documentation License
	LGPL: GNU Lesser Gnu Public License

	Index

