
HDF5 thumbnailer

Author:
Marc Schädeli
Semafor AG

scm@semafor.ch

Basel, 2017-09-21

SEMAFOR Informatik & Energie AG Revision Rev. A
M. Schädeli Datum 2017-09-21

Contents

1 Introduction 3
1.1 Purpose . 3
1.2 Definitions . 3

1.2.1 XMP . 3
1.3 System overview . 3
1.4 Source structure . 4

2 Building and installing 5
2.1 Linux . 5
2.2 Windows . 5
2.3 OSX . 5

3 Components 7
3.1 Python scripts . 7

3.1.1 thumbnailInserter.py . 7
3.1.2 metadataReader.py . 8

4 Userblock storage 9
4.1 Overview . 9

4.1.1 How the userblock works . 9
4.2 Position in the userblock . 9
4.3 Signature . 9

© SEMAFOR Informatik & Energie AG 2

SEMAFOR Informatik & Energie AG Revision Rev. A
M. Schädeli Datum 2017-09-21

1 Introduction

1.1 Purpose

The purpose of this document is to describe the functionality of the HDF5 thumbnailer
and how to use it. It should also tell how to add your own data to the HDF5 userblock
without conflicting the current XMP metadata.

1.2 Definitions

1.2.1 XMP

XMP is a format by Adobe, created to store metadata and thumbnails, and to be
embedded into different file types. The XMP data can either be stored in a sidecar file
next to the HDF5 file or directly in the file’s userblock.

The Python scripts allow you to specify additional data to populate the XMP with when
inserting or updating the data. The scripts can also read that data from the XMP file
again in JSON format for further use.

1.3 System overview

The purpose of this thumbnailer is to generate thumbnails for HDF5 files by extracting
them from XMP data. The XMP data is either stored in a sidecar file or embedded into
the HDF5 userblock, prefixed by a signature.

The use of that signature should also be there to make storage of any data in the
userblock more unified safer from overriding. A more detailed description about the
signature can be found later in the document.

© SEMAFOR Informatik & Energie AG 3

SEMAFOR Informatik & Energie AG Revision Rev. A
M. Schädeli Datum 2017-09-21

1.4 Source structure
/

commonCore functionality for extracting a thumbnail
doc ..Documentation
examples Example HDF5 and XMP files with varying thumbnail store methods
hdf_pythonPython scripts for inserting, reading and updating
metadata/thumbnails

testsUnit tests for the Python scripts
linuxLinux implementations for the thumbnailer

gnomeGNOME implementation for Nautilus
kdeKDE implementation for Dolphin
testsUnit-tests for the core thumbnailer functionality

windows .Windows implementation for the thumbnailer (Visual Studio project)

In the section Components 3 the important parts will be explained further.

© SEMAFOR Informatik & Energie AG 4

SEMAFOR Informatik & Energie AG Revision Rev. A
M. Schädeli Datum 2017-09-21

2 Building and installing

2.1 Linux

The Linux versions use CMake for their build system.

To compile the thumbnailer, a build folder needs to be created. Open a terminal in the
build folder and execute the CMake command.
cmake −DCMAKE_BUILD_TYPE=Re l ea se <path to l i nux f o l d e r in p ro j e c t >

With this command it will configure for the GNOME and KDE versions.

To only build the GNOME or KDE version, use these options to turn one of the platforms
off:
−Dkde=OFF or −Dgnome=OFF

After it is done configuring, the make command can be executed to compile it. When
it is compiled, the make test command can be used to run the unit-tests or the make
install can to install it system-wide.

After the install command, it will work in GNOME immediately, in KDE the Dolphin
plugin needs to be enabled first.

To enable it open Dolphin and go to Control > Configure Dolphin > General > Previews
and enable previews for HDF5 Files.

If the thumbnailer should be uninstalled again, make uninstall needs to be executed in
the build folder.

2.2 Windows

The Windows implementation is a VisualStudio solution.

It consists of 2 sub projects. One is the thumbnailer itself, the other one is a installer
project to create an install wizard.

To install the thumbnailer, either the installer can be used (Recommended) or it can be
installed manually, by executing the regsvr32.exe command as an admin on the dll.

2.3 OSX

The OSX implementation is a Xcode project.

When you build it, it automatically installs itself for the current user, into the directory
/Users/<username>/Library/QuickLook/HDF5 Thumbnailer.qlgenerator.

© SEMAFOR Informatik & Energie AG 5

https://marketplace.visualstudio.com/items?itemName=VisualStudioProductTeam.MicrosoftVisualStudio2017InstallerProjects
https://marketplace.visualstudio.com/items?itemName=VisualStudioProductTeam.MicrosoftVisualStudio2017InstallerProjects

SEMAFOR Informatik & Energie AG Revision Rev. A
M. Schädeli Datum 2017-09-21

To make it available to all users of the system, copy the HDF5 Thumbnailer.qlgenerator
folder into /Library/QuickLook/

© SEMAFOR Informatik & Energie AG 6

SEMAFOR Informatik & Energie AG Revision Rev. A
M. Schädeli Datum 2017-09-21

3 Components

3.1 Python scripts

The two Python scripts are called thumbnailInserter.py and metadataReader.py They
require the argparse and xmltodict modules to be installed.

3.1.1 thumbnailInserter.py

This script takes a HDF5 file, and writes a version of it with the thumbnail and metadata.
It has also the possibility of updating or delete existing data.

When working with an HDF5 file that doesn’t contain any XMP block, a new one will
be created. If the file already has XMP data inside the script will update the data you
give it and leave the rest alone.

To work the script needs a few arguments. The first argument is the HDF5 file you
want to use. If the HDF5 file doesn’t already have a thumbnail, we need to provide
the path to an image file via the –img argument. The format of the image can be any
format understandable by the system, but generally PNG or JPG for biggest possible
compatibility and good quality/fileSize.

If you want to write the data into a sidecar file, you need to provide the –sidecar
argument.

When you don’t provide the sidecar argument you need to specify an outFile where to
write the file with the metadata and thumbnail. This is specified with the –outFile
argument. (Or -o as a short version). If omitted when writing to a sidecar file the name
of the outFile will be the name of the HDF5 file with the hdf5 suffix replaced with xmp.

To provide additional data to insert into you can use the –data or -d argument. You
can provide any amount of those arguments. The first word written after the argument
represents the key name of the data and the second one the data to store in it.

There are few restrictions as to what can be used as key names and values. Key names
can’t contain any character not normally allowed in an XML tag and can’t be called
Thumbnails. Values can contain any printable character except &, < and >. If you want
to use any of these they need to be escaped. None is also not allowed as a saved value.

To remove a key-Value pair when updating, just set the value to None

Here is an example of inserting an image and some data into a file.
. / thumbna i l I n s e r t e r . py o l d F i l e s / eng ine . hdf5 \

−o newFi l e s / eng ine . hdf5 −−img ~/ P i c t u r e s / p l a c eh o l d e r . png \
−d Author ” B i l l from nextdoor ” −d ApprovedBy Me

In this example we insert placeholder.png as the thumbnail, Bill from nextdoor as a value
called Author and who the file got approved by.

© SEMAFOR Informatik & Energie AG 7

SEMAFOR Informatik & Energie AG Revision Rev. A
M. Schädeli Datum 2017-09-21

If for example the ApprovedBy field isn’t needed anymore and we want to remove it we
can set its value to None to remove the field.
. / thumbna i l I n s e r t e r . py newFi l e s / eng ine . hdf5 \

−o newe rF i l e s / eng ine . hdf5 −d ApprovedBy None

This removes the ApprovedBy field without touching the inserted thumbnail or Author.

3.1.2 metadataReader.py

This script reads the XMP data from the specified HDF5 or XMP file.

The script has the option to output the thumbnail to a file or print the metadata to
stdout formatted as JSON.
. / metadataReader . py newe rF i l e s / eng ine . hdf5

This will output: {”Author”: ”Bill from nextdoor”}

© SEMAFOR Informatik & Energie AG 8

SEMAFOR Informatik & Energie AG Revision Rev. A
M. Schädeli Datum 2017-09-21

4 Userblock storage

4.1 Overview

In this section will be explained how the XMP data is stored in the HDF5 file’s userblock
and how to store your own data without damaging other data stored there with this
method.

4.1.1 How the userblock works

The userblock is a arbitrarily sized section that can be placed in any HDF5 file before
it starts.

When reading a HDF5 file the HDF5 library checks for the HDF5 signature at the start
of the file. If it doesn’t find a signature then it assumes that it contains a userblock and
then it checks at the next power of 2 for the signature. It will do this until it either finds
a signature or reaches the end of the file. When writing to the userblock it needs to pad
the file until it reaches the next power of 2 for the HDF5 signature.

4.2 Position in the userblock

To ensure compatibility between multiple data blocks a signature to be used for the
stored data blocks is specified. If the userblock has a correct signature then additional
data can be inserted right before or after any other data block in the userblock.

4.3 Signature

The signature for the data blocks is an extension of the HDF5 signature with an added
content length.

The HDF5 signature is made up of 8 bytes with the following content:

Decimal: 137 72 68 70 13 10 26 10
Hexadecimal: 89 48 44 46 0d 0a 1a 0a

ASCII: \211 H D F \r \n \032 \n

The signature for a custom data block is made up of two parts.

The first is the identifier:
Decimal: 137 72 ** ** 13 10 26 10

Hexadecimal: 89 48 ** ** 0d 0a 1a 0a
ASCII: \211 H * * \r \n \032 \n

Except for bytes 3 and 4 it is the same as the HDF5 identifier. Bytes 3 and 4 can be
any value as long as it isn’t used by another program, meaning they can’t be the same

© SEMAFOR Informatik & Energie AG 9

SEMAFOR Informatik & Energie AG Revision Rev. A
M. Schädeli Datum 2017-09-21

as the ones in the identifiers for the HDF5 and XMP metadata signature.

For example, the XMP block with the metadata and thumbnail have this signature:

Decimal: 137 72 77 80 13 10 26 10
Hexadecimal: 89 48 4D 50 0d 0a 1a 0a

ASCII: \211 H M P \r \n \032 \n

The Metadata XMP header is extracted by the thumbnailer, while others are skipped.

The next part of the signature is 8 bytes describing the size of the data, in big-endian
byte order. Storing the size lets the thumbnail inserter know where it could potentially
insert the XMP block and it lets the thumbnailer find the data faster

Here is an example size of 105585 bytes:

Hexadecimal: 00 00 00 00 00 01 9C 71

With the identifier, our XMP data will have this signature:

Hexadecimal: 89 48 4D 50 0D 0A 1A 0A 00 00 00 00 00 01 9C 71

When the thumbnailer reads the signatures it first reads the first 8 bytes. It then looks
if it’s a valid header by just ignoring byte 3 and 4. If it’s valid then it checks if it’s an
XMP with metadata by comparing it to the HMP header.

© SEMAFOR Informatik & Energie AG 10

SEMAFOR Informatik & Energie AG Revision Rev. A
M. Schädeli Datum 2017-09-21

List of Figures

Listings

© SEMAFOR Informatik & Energie AG 11

	Introduction
	Purpose
	Definitions
	XMP

	System overview
	Source structure

	Building and installing
	Linux
	Windows
	OSX

	Components
	Python scripts
	thumbnailInserter.py
	metadataReader.py

	Userblock storage
	Overview
	How the userblock works

	Position in the userblock
	Signature

